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ABSTRACT

K-means clustering plays a vital role in data mining. As an

iterative computation, its performance will suffer when ap-

plied to tremendous amounts of data, due to poor temporal

locality across its iterations. The state-of-the-art streaming

algorithm, which streams the data from disk into memory

and operates on the partitioned streams, improves temporal

locality but can misplace objects in clusters since different

partitions are processed locally. This paper presents a col-

laborative divide-and-conquer algorithm to significantly im-

prove the state-of-the-art, based on two key insights. First,

we introduce a break-and-recluster procedure to identify the

clusters with misplaced objects. Second, we introduce col-

laborative seeding between different partitions to acceler-

ate the convergence inside each partition. Compared with

the streaming algorithm using a number of wikipedia web-

pages as our datasets, our collaborative algorithm improves

its clustering quality by up to 35.3% with an average of 8.8%

while decreasing its execution times from 0.3% to 80.1% with

an average of 48.6%.

1. INTRODUCTION

K-means clustering is a commonly used algorithm for data

mining, which was proposed by S. P. Lloyd in 1957 [26]. It

partitions n objects into k clusters such that similar ob-

jects belong to the same cluster, according to some similar-

ity function. In spite of the fact that K-means was proposed

over 50 years ago and thousands of clustering algorithms
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have been published since then, K-means is still widely used

in a variety of areas, ranging from market segmentation,

computer vision, geostatistics, astronomy to agriculture. As

a representative scenario, billions of Web pages create ter-

abytes of new data every day, with many of these data

streams being unstructured, adding to the difficulty in ana-

lyzing them. The K-means clustering algorithm can be used

to discover the natural groups of the data, allowing us to

understand, process and summarize the data.

Specifically, the K-means clustering algorithm [26] assigns

each object to the cluster whose center (also called cen-

troid) is the nearest. The algorithm starts with an initial set

of cluster centers, chosen at random or according to some

heuristic procedure. Then the algorithm iteratively assigns

each object to one of the clusters. In each iteration, each ob-

ject is assigned to its nearest cluster center according to the

Euclidean distance between the two. Then the cluster cen-

ters are re-calculated [31]. The pseudo code of the K-means

clustering algorithm is shown in Algorithm 1.

Algorithm 1 K-means clustering algorithm.

procedure KMeans(S, k)

1: Initialize k empty clusters C1, C2, ..., Ck.

2: Initialize cluster centers for C1, C2, ..., Ck randomly or

heuristically.

3: while The convergence criterion is not met do

4: for each object s in S do

5: Compute the distance from s to all centers.

6: Assign s to its nearest cluster.

7: end for

8: for each cluster Ci in {C1, C2, ..., Ck} do

9: Update the center of Ci according to all objects

belonging to Ci.

10: end for

11: end while

As the data volume is getting more tremendous, the origi-

nal K-means algorithm would face a big challenge of reusing



data. When the data volume is large, every object would

be fetched from disk into memory for each iteration, which

means the data in memory cannot be reused, causing poor

temporal locality. To alleviate this problem, Guha et al

presented a one-pass divide-and-conquer k-means algorithm

in [15], as shown in Algorithm 2, which divides the data into

partitions, clusters each of these partitions in order to find

a ∗ k centers (called a Local Cluster), and then again clus-

ters the obtained centers (with each center weighted by the

number of points assigned to it, called a Merge Cluster) .

Algorithm 2 Divide-and-Conquer streaming K-means clus-

tering algorithm [15].

procedure Streaming-KMeans(S, k)

1: Divide S into P partitions S1, S2, ..., SP .

2: for each partition Si (i ∈ [1, P ]) do

3: Local Cluster: Using K-means to cluster Si into a ∗ k

clusters.

4: end for

5: Let S′ be the a∗P ∗k centers obtained, with each center

being weighted by the number of points assigned to it.

6: Merge Cluster: Using K-means to Cluster S′ into k clus-

ters.

The state-of-the-art divide-and-conquer algorithm assumes

that all input data are used only once. The Merge Cluster

phase uses each center to represent its corresponding cluster,

unaware of the distribution of individual objects inside the

cluster. In particular, if two objects are misplaced into one

cluster in the Local Cluster phase, the Merge Cluster phase

would have no opportunity to eliminate the error which

would be eventually embodied in the final results, as the

motivating example will show in Section 2. To reduce such

errors, Guha et al introduced the constant a into the algo-

rithm [15], thus causing the computations to be magnified

by a times. As a result, users are required to determine an

appropriate a to make a tradeoff between clustering quality

and efficiency. Furthermore, how to determine a is still an

open question.

In this paper, we propose a collaborative divide-and-conquer

K-means algorithm to avoid introducing the above constant

a while retaining good temporal locality exhibited by Algo-

rithm 2, and additionally, to achieve good clustering quality.

Our key insights are:

• Collaborative Merging. We introduce a break-and-recluster

procedure into the Merge Cluster phase, which allows

us to identify a cluster with misplaced objects, break

the cluster and re-assign its objects to their appropri-

ate destination clusters.

• Collaborative Seeding. As more and more partitions

are processed, the centers obtained from completed

partitions would be gradually approaching the real ones.

Therefore, we present a collaborative seeding mecha-

nism, which enables the early-finished partitions to de-

liver achieved cluster centers to subsequent partitions

as their initial points, enabling the clustering process

to converge in a small number of iterations.

• We implement the collaborative divide-and-conquer al-

gorithm on an 8-core Intel platform. Validation using

a number of wikipedia webpages as the datasets shows

that our collaborative approach improves the cluster-

ing quality by 8.8% in average, up to 35.3%. Mean-

while, Our approach decreases the execution time from

0.3% to 80.1%, with an average of 48.6%.

The rest of the paper is organized as follows. Section 2 in-

troduces the background and motivation. Section 3 presents

our collaborative divide-and-conquer algorithm. Section 4

presents the theoretical discussion. Section 5 discusses the

parallel implementation issues. Section 6 describes our ex-

perimental validation. Section 7 discusses the related work.

Section 8 concludes.

2. BACKGROUND AND MOTIVATION

2.1 Background - K-means Clustering

We introduce briefly the K-means clustering algorithm,

which is typically as shown in Algorithm 1.

Cluster Center µ(Ci).

In algorithm 1, for each iteration, we need to update the

centers for all clusters according to the objects belonging to

that cluster. For a given cluster Ci, its center is defined as

the mean or centroid of all objects in the cluster, as

µ(Ci) =
1

|Ci|

∑

x∈Ci

x (1)

Objective Function.

A typical measure of how well the centroids represent the

members of their clusters is the residual sum of squares,

which is a typical objective function for K-means and the

goal of the algorithm is to minimize it. In this paper, we

use the residual sum of squares as our objective function,

denoted as RSS, which is the squared distance of each vector

from its centroid summed over all vectors, as

RSS =
k∑

i=1

RSSk

where,

RSSi =
∑

x∈Ci

|x− µ(Ci)|
2

(2)

where N is the number of objects.

Termination Condition.

In general, the K-means clustering algorithm has three

termination conditions: (1) a fixed number of iterations has

been executed; (2) the centroids of clusters do not change

between iterations, or the RSS difference between two iter-

ations is smaller than a threshold; (3) assignment of objects

to clusters does not change between iterations. Typically,

(2) or (3) ensures that the clustering is of a desired quality,

and (1) limits the execution time of the clustering algorithm.

In this paper, we use (2) as our termination condition, but

our approach works if one of the other two termination con-

ditions is used.



2.2 Problem of Existing Divide-and-Conquer
Approach

As mentioned in Section 1, the state-of-the-art divide-and-

conquer K-means algorithm is able to exploit temporal local-

ity for large data. However, due to the unawareness of clus-

ter internal organizations during the Merge Cluster phase,

it has to introduce a constant a and requires users to make

a tradeoff between clustering quality and efficiency. In this

section, we use a motivating example to discuss this issue in

detail.

Figure 1 shows a motivating example, for k = 3 and

a = 1. First, the data S in Figure 1(a) are divided into two

asymmetric partitions, S1 and S2. Then, the Local Cluster

phase clusters each partition into three clusters, denoted as

C11, C12, C13 and C21, C22, C23, respectively, as shown in

Figures 1(b) and (c). For convenience, we use Cij to repre-

sent a cluster and cij for the corresponding cluster center.

Finally, the Merge Cluster phase would further group the

achieved 6 centers into 3 clusters (Figure 1(d)), and the final

clustering results are shown in Figure 1(e).

From Figure 1, we can observe that when a = 1, the asym-

metric partition led to a “bad” cluster (C23), as shown in

Figure 1(c), which inaccurately contains objects that should

have belonged to two different clusters. Afterwards, the

Merge Cluster phase represents the objects located in one

cluster as one concentrated point, thus having no oppor-

tunity to correct the inaccuracy. Therefore, the unexpected

results are kept till the final results, as shown in Figure 1(e).

To tackle this problem, a can be enlarged to get more clus-

ters in the Local Cluster phase and reduce the possibility of

generating “bad” clusters. However, this approach increases

the computation by a times, furthermore, there is no good

model to determine the value of a.

2.3 Our Motivation

Examining Figure 1(d), we can observe that c11 and c21

are very close to each other, which means they can be folded

into one cluster, and similarly for c12 and c22. However, c23

is located almost at the midpoint of c13 and c12(c22). This

motivates us to split C23 into two parts, with one assigned

to C13 and the other to C12(C22).

Figure 2 shows our key idea, where Figure 2(a) is the clus-

ter centers obtained after the Local Cluster phase, which is

identical with Figure 1(d). Figure 2(b) shows the operation

which splits C23 into two parts, which are successively as-

signed to C13 and C12(C22) respectively. In particular, we

break C23 and re-assign each object inside it into C13 or

C12(C22) according to the shortest distance. Now we can

obtain three new cluster centers, as c1, c2, c3 in Figure 2(c),

which would be closer to the real centers compared with

Figure 1(e).

3. COLLABORATIVE DIVIDE-AND-CONQUER

ALGORITHM

3.1 Overview

Algorithm 3 gives our collaborative divide-and-conquer k-
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Figure 1: Unexpected results of the divide-and-conquer al-

gorithm [15].

Algorithm 3 Collaborative divide-and-conquer K-means

clustering algorithm.

procedure Co-DCKMeans(S, k, P )

1: Divide S into P partitions S1, S2, ..., SP .

2: Initialize k centers c = (c1, c2, ..., ck) randomly or heuris-

tically.

3: for each partition Si (i ∈ [1, P ]) do

4: Set initial points as c.

5: Local Cluster: Using K-means to cluster Si into k

clusters, as Ci.

6: Let S′ be the i∗k centers of C1, ..., Ci, with each center

being weighted by the number of points assigned to it.

7: Co Seeding: Using collaborative seeding to update

c = Co Seeding(S′).

8: end for

9: Let C be the P ∗ k local clusters obtained.

10: Co Merging: Using collaborative merging to Cluster C

into k clusters.



means clustering algorithm, which takes three parameters,

S for the input data to be clustered, k for the number of

clusters, and P for the number of partitions.

First, the input data S is evenly divided into P parti-

tions, as S1, S2, ..., SP (line 1), and k initial cluster cen-

ters are randomly or heuristically generated as the seed c,

which would be taken as the initial points for the first parti-

tion (line 2). Second, the P partitions are sequentially pro-

cessed. Each partition Si takes c as its initial points, and

uses the K-means algorithm to determine its own local clus-

ter centers Ci (lines 4-5). After one partition is processed,

we use Co Seeding to update the seed c (lines 6-7), which

will be used as the initial points of next partition. Third,

the achieved P ∗ k local clusters are merged together into k

new global clusters using collaborative merging Co Merging

(lines 9-10). Details of collaborative merging and seeding

will be discussed in Section 3.2 and 3.3.
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Figure 2: Example of the break-and-recluster operation.

3.2 Collaborative Merging

In Algorithm 2, Merge Cluster uses K-means to cluster

the weighted local centers S′ into k clusters, unaware of

the objects inside each local cluster. Instead of representing

the objects located in one local cluster as one concentrated

point, our collaborative merging identifies “bad” local clus-

ters and traverses the objects inside them. We call the P ∗k

clusters after Local Cluster as “local clusters”, while the fi-

nal k clusters as “global clusters”. We extend the K-means-

based approach in Algorithm 2 and propose a collaborative

merging algorithm.

First, we use the original Merge Cluster phase to cluster

the P ∗ k centers to obtain k global clusters, with each cen-

ter weighted by the number of points assigned to it. Sub-

stantially, we traverse the P ∗ k local clusters seeking for

candidates for break-and-recluster. If a local cluster LCi is

closer to more than one global cluster centers, cj1, ..., cjm,

we remove LCi from its original global cluster, break LCi

and re-assign the objects in LCi into Cj1, ..., Cjm.

In the collaborative merging, we must address two issues:

1) how to select the local cluster candidates for break-and-

recluster, i.e., “bad” clusters, and 2) for a selected local clus-

ter, how to determine its destination global clusters? We do

so by introducing a so-called the ε-Nearest Set for a given

local cluster, which includes all global clusters “near” to the

given local clusters. If the set contains more than one ele-

ment, the corresponding local cluster should be taken as a

candidate for break-and-recluster, and the elements in the

ε-Nearest Set are the destination global clusters.

Below in this section, we first introduce our weighted dis-

tance definition (Section 3.2.1) and then present our merging

algorithm (Section 3.2.2).

3.2.1 Weighted Distance Definition

For two objects, we use Euclidean distance to measure the

distance between them. While in the collaborative merging,

we need to measure the distance between two clusters, and

the distance between a cluster and a point.

Def 1 (Weighted Distance Between Cluster-Point).

Given a cluster (Ci) and a point (p), the weighted distance

Ω(Ci, p) between Ci and p is defined as:

Ω(Ci, p) = |Ci| ∗ |µ(Ci)− p| (3)

Lemma 1. When two clusters Ci and Cj are folded into

one Ci,j , the new cluster would contain all objects in Ci and

Cj , and its center is the centroid of all of these objects, as:

|Ci,j | = |Ci|+ |Cj |

µ(Ci,j) =
µ(Ci)∗|Ci|+µ(Cj)∗|Cj |

|Ci|+|Cj |

(4)

Def 2 (Weighted Distance Between Clusters). Given

two clusters (Ci and Cj), their weighted distance Ω(Ci, Cj)

is defined as the RSS increment obtained after Ci and Cj

are folded together, specifically as:

Ω(Ci, Cj) = RSSi,j − (RSSi +RSSj) (5)

Using Lemma 1, Equation 5 can be rewritten as:

Ω(Ci, Cj) = RSSi,j − (RSSi +RSSj)

= (
∑

x∈Ci

|x− µ(Ci,j)|
2 +

∑
x∈Cj

|x− µ(Ci,j)|
2)−

(
∑

x∈Ci

|x− µ(Ci)|
2 +

∑
x∈Cj

|x− µ(Cj)|
2)

=
|Ci|∗|Cj |

|Ci|+|Cj |
|µ(Ci)− µ(Cj)|

2

(6)

Def 3 (ε-Nearest Set). For a given local cluster LCi

and a set of global clusters C, let η(LCi, C) be the clos-

est global cluster to LCi in C. Thus LC′
is ε-nearest set

εNS(LCi, C) is defined as a set containing all the clusters

whose weighted distance to LCi is not larger than (1 + ε) ∗

Ω(LCi, η(LCi, C)):

εNS(LCi, C) =

{Cj |Ω(LCi, Cj) < (1 + ε) ∗ Ω(LCi, η(LCi, C))}
(7)

In our definition of ε-nearest set, ε is a user-specified

variable, for balance between clustering quality and effi-

ciency. When ε is set to 0, break-and-recluster would be

disabled, and our collaborative merging will behave as the

Merge Cluster in Algorithm 2. When ε is set to infinity, all

input objects would be traversed, which would be inefficient.

We will discuss and evaluate the influence of ε in Section 6.



3.2.2 Merging Algorithm

Algorithm 4 shows the collaborative merging algorithm,

with the input C as the P ∗ k local clusters obtained at the

Local Cluster phase. First, we use K-means to cluster the

local cluster centers into k global clusters, as in Algorithm 2

(lines 1-2). Then we traverse the P ∗k local clusters (lines 3-

8). If the ε-nearest set of one local cluster includes more than

one global cluster, we break the local cluster and re-cluster

its objects into its ε-nearest set (lines 4-7).

Algorithm 4 Collaborative merging algorithm.

procedure Co Merging(C)
1: Let C′ be the P ∗ k centers of C, C′

i = µ(Ci) and the
weight of C′

i is |Ci|.
2: Use K-means to cluster the C′ into k global clusters

G = (G1, ..., Gk).
3: for each Ci from C do
4: Compute Ci’s ε-nearest set E = εNS(Ci, G).
5: if |E| > 1 then
6: break and re-cluster G = break(Ci, E,G).
7: end if
8: end for
9: Output G.

In particular, the break-and-recluster algorithm is shown

in Algorithm 5. For each individual object s in the cluster

to be broken (C∗), we compute the Euclidean distance from

s to all centers of the global clusters in the corresponding

ε-nearest set (E), and assign s to its nearest cluster. We will

prove that the break-and-recluster operation would always

improve the clustering results, in Section 4.

Algorithm 5 The break-and-recluster algorithm.

procedure break(C∗, E, G)
1: Let G∗ be the global cluster that C∗ belongs to.
2: for each object s in C∗ do
3: Compute the Euclidean distance from s to all global

centers in E.
4: Assign s to its nearest global cluster in E.
5: end for
6: for each cluster Gi in E do
7: Update the center of Gi.
8: end for
9: Output G.

3.3 Collaborative Seeding

The key insight of our collaborative seeding is that, intu-

itively the centers we get from partial partitions are good

candidates as initial points for the remaining partitions, for

large data. As shown in Figure 1, if we use the local centers

obtained from S1 as the initial points for processing S2, only

a small number of iterations would be required. Therefore

we introduce this as a heuristic of “collaborative seeding”,

which would not be efficient for small or ordered data, but

works for large and randomly distributed data.

As shown in Algorithm 3 (line 7), the collaborative seeding

takes the weighted local cluster centers of completed parti-

tions as the input S′, which includes i ∗ k elements. Our

objective is to find the k centers of S1, ..., Si as the initial

points for clustering Si+1. Therefore, we leverage the K-

means algorithm, and use the obtained k centers as the new

seed.

4. THEORETICAL DISCUSSION

Compared with the state-of-the-art divide-and-conquer al-

gorithm in [15], our approach introduces an extra pass for

accessing the input data. Therefore, the multiple partitions

can be clustered in a collaborative way. In particular, we

have proposed collaborative merging to improve clustering

quality without introducing the cost of constant a in Algo-

rithm 2. As discussed above, the key point is that we have

introduced the break-and-recluster operations into the merg-

ing step. Different from representing the objects located in

one local cluster as one concentrated point in [15], our algo-

rithm is aware of the distribution of individual objects inside

one local cluster. We will prove that the break-and-recluster

operations are beneficial.

In our theoretical analysis, cost is used to represent the

objective function value for a clustering result, which is the

RSS in this paper.

Theorem 1. When clustering n local clusters (LC1, ..., LCn,

with the weights as w1, ..., wn) into k clusters (G1, ..., Gk),

let C be the solution achieved using Algorithm 2. If we break

Mi into more than one cluster using Algorithm 5 and let the

solution be C′, the cost will be optimized, i.e., ΦC′ 6 ΦC.

Proof. Assume one local cluster LCx is assigned into G∗
a

in C, and we have decided to break it and re-cluster it into

G∗
a and Gb in C′.

We introduce an intermediate state C0, which describes

the state before LCx is assigned to any global clusters. In

particular, C0 contains k + 1 clusters, k global clusters and

one local cluster (LCx). Let Ga be the global cluster which

is closest to LCx. Therefore Algorithm 2 would assign LCx

into Ga, turn Ga into G∗
a and obtain C.

We use RSS0 to represent the RSS for C0. Let x = |LCx|,

a = |Ga|, a
∗ = |G∗

a|, X = µ(LCx), A = µ(Ga), and A∗ =

µ(G∗
a).

In the solution of C, LCx is completely assigned to Ga,

and the RSS increment over RSS0 can be computed using

Equation 6, specifically as:

∆RSSC = RSSC −RSS0

= x∗a
x+a

|X −A|2
(8)

On the other hand, in the solution of C′, LCx is broken

and re-clustered. Assume LCx is split into LCa and LCb,

with LCa re-assigned into Ga and LCb into Gb.

Let xa = |LCa|, xb = |LCb|, Xa = µ(LCa), Xb = µ(LCb),

b = |Gb, and B = µ(Gb). The RSS increment over RSS0 is

∆RSSC′ = RSSC′ −RSS0

= xa∗a
xa+a

|Xa −A|2 + b∗xb

b+xb
|Xb −B|2

(9)



With Algorithm 5,

∀x ∈ Xb, |x−A| > |X −A|, so

m|X −A| = Σx∈Xa |x−A|+Σx∈Xb
|x−A|

> xa|Xa −A|+ xb|Xb −A|

Therefore, we can get |Xa −A| 6 |X −A|.

Meanwhile, Algorithm 5 gives |Xb −B| 6 |X −A∗|. So

∆RSSC′ −∆RSSC

= xa∗a
xa+a

|Xa −A|2 + b∗xb

b+xb
|Xb −B|2 − x∗a

x+a
|X −A|2

6
xa∗a
xa+a

|X −A|2 + b∗xb

b+xb
|X −A∗|2 − x∗a

x+a
|X −A|2

= xa∗a
xa+a

|X −A|2 + b∗xb

b+xb
( a
a+x

)2|X −A∗|2 − x∗a
x+a

|X −A|2

= − a+b+x

(a+xa)(b+xb)(a+x)2
(a2xb

2)|X −A∗|2

6 0

Therefore, the break-and-recluster operation reduces the

cost, and the proof can be extended for breaking one local

cluster into more than two other global clusters. Thus the

theorem has been proved.

5. PARALLEL IMPLEMENTATION

In this paper, we focus on machines with shared mem-

ory and consider fine-grained parallelization using OpenMP.

Liao parallelized the basic K-means algorithm (Algorithm 1)

in [3], which annotated the two for loops inside one itera-

tion as omp parallel. In particular, all input objects are

traversed and assigned to the destination cluster in paral-

lel, and all cluster centers are updated also in parallel. We

leverage this approach in our implementation, to parallelize

Local Cluster phase. Meanwhile, the collaborative seeding is

also a K-means algorithm, which can be parallelized in the

same way.

Furthermore, we have also parallelized the collaborative

merging algorithm (Algorithm 4). Since the set of global

clusters G is globally maintained, we keep the traversal of

C as sequential and parallelize the ε-nearest set computa-

tion and break-and-recluster operation. For the ε-nearest

set computation, the weighted distances to all global clusters

are computed in parallel. And for the break-and-recluster

operation, both of the two for loops in Algorithm 5 are par-

allelized.

However, our algorithm can be parallelized with coarse

granularity in clusters using MPI. In particular, the parti-

tions can be processed in parallel, with one or more par-

titions assigned to one node in a cluster. The important

thing to note is that, for collaborative seeding, there exists

dependences between different partitions. Thus, each node

maintains its own seed and the collaborative seeding would

not cross different nodes. Furthermore, we can also exploit

two levels of parallelism implemented using MPI+OpenMP.

More details about the coarse-grained implementation are

beyond the scope of this paper.

6. EVALUATION

We demonstrate using a number of real-world datasets

containing wikipedia webpages for document clustering us-

ing the K-means algorithm. The target platform used is

an 8-core Intel platform with two 2.40GHz quad-core Xeon

E5620 processors. Each processor has 32KB L1 data cache

per core, 32KB L1 instruction cache per core, 256KB L2

cache per core, and 12MB L3 cache shared by all cores. The

physical memory is 4G Bytes.

6.1 Methodology and Dataset

We use the document clustering as our target application.

Document clustering, also called as text clustering, auto-

matically organizes documents into clusters, and is widely

used for topic extraction, information retrieval and filtering.

Each document is turned into a vector using TF-IDF, which

leverages “term frequency - inverse document frequency” to

reflect how important a word is to a document in a collec-

tion of corpus. In particular, each dimension corresponds to

a separate term, e.g., word, and the dimensionality of the

vector is the number of words in the vocabulary (the number

of distinct words occurring in the corpus) [33, 32].

We download 14 datasets from Wikipedia database [4],

with each dataset containing a large number of wikipedia

webpages for clustering. We then extract each document

into a TF-IDF vector using Lucene [1]. The number of non-

zero element in the datasets ranges from 30M to 2G. For

each dataset, we set the number of clusters k as 6, 8, 12 and

20 respectively. Therefore, we have 14 ∗ 4 = 56 workloads in

total. In our evaluation, we compare the clustering quality

and efficiency with the divide-and-conquer streaming algo-

rithm in [15] (Algorithm 2, for which a is set to 1). We

implement both algorithms using OpenMP, and the parti-

tion size is set as 20M . For both algorithms, the iteration

ends when the difference of RSS between two iterations is

below 0.001. For our collaborative divide-and-conquer algo-

rithm, the parameter of ε is set to 0.5.

6.2 Clustering Quality

We use the RSS as the objective function for measur-

ing the clustering quality, so the smaller, the better. Fig-

ure 3 depicts the normalized RSS for the divide-and-conquer

streaming (as the “Streaming” bars) algorithm and our col-

laborative algorithm (as the “Collaborative” bars).

For the 56 workloads, our collaborative divide-and-conquer

approach decreases the RSS by 8.8% in average, up to 35.3%

for workload 20. The benefit of our clustering quality varies

with workloads. If the streaming algorithm generates few

“bad” local clusters, such as workloads 1, 2, 3, 41, our col-

laborative algorithm would get similar qualities with the

streaming algorithm. Otherwise, our collaborative algorithm

would exhibit better clustering quality.

6.3 Efficiency

Figure 4 compares the execution times of the streaming al-

gorithm and our collaborative algorithm, normalized by the

execution time of the streaming algorithm. Our approach

decreases the execution time from 0.3% to 80.1%, with an

average of 48.6%.

For both algorithms, we use the same partition size and

the convergence criterion. The performance benefit of our

collaborative approach comes from our collaborative seed-

ing. Due to the good initial points selection, our approach
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Figure 3: Normalized RSS for the 56 workloads of document clustering.
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Figure 4: Normalized execution time for the 56 workloads of document clustering.
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Figure 5: Normalized number of iterations for the 56 workloads of document clustering.
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Figure 6: Normalized RSS / merging time varying with ε.

significantly reduces the number of iterations required to

meet the convergence criterion. Figure 5 shows the num-

ber of iterations for the two algorithms, normalized by the

streaming algorithm. The good correlation between Figure 4

and 5 illustrates that decreasing the number of iterations

leads to the performance improvement.

Note that in Figure 4 and 5, our approach does not signifi-

cantly decrease the number of iterations for workload 9, thus

yielding negligible performance improvement. The reason is

that this workload takes only a small number of iterations

until the convergence criterion is met, i.e., 7. Our collabo-

rative algorithm reduces the number of iteration from 7 to

6, therefore the execution time is only slightly decreased.

6.4 Effects of ε

To evaluate the effects of the parameter ε when calculat-

ing the ε-nearest sets in the collaborative merging, we take

workload 11 for further analysis. Figure 6 shows the nor-

malized RSS and merging time varying with ε. The blue

line represents the normalized RSS when ε varies from 0 to

1.3 (against the right y-axis), and the red line represents the

normalized merging time (against the left y-axis).

As ε increases, our collaborative merging would identify

more “bad” local clusters for the break-and-recluster proce-

dure, leading to better clustering results, i.e., smaller RSS.

Meanwhile, as more local clusters are identified for break-

and-recluster, more computations are introduced, causing

the merging time increased. As Figure 6 shows, when ε in-

creases from 0 to 0.5, the RSS decreases rapidly while the

merging time increases slightly. We observed similar results

for a number of workloads. Therefore, we set ε to 0.5 by

default.

In Figure 6, we can observe that when ε exceeds 1.0,

the merging time increases dramatically while the cluster-

ing result exhibits negligible improvement. The reason is

that when ε is too large, some local clusters would be mis-

identified as “bad”, causing a number of unnecessary break-

and-recluster operations.

6.5 Comparing with Optimal Results
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Figure 7: Normalized RSS for the 6 synthetic datasets.
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Figure 8: Normalized execution time for the 6 synthetic

datasets.

The K-means clustering algorithm does not guarantee to

find the global optimal solution. Therefore, for the 54 work-

loads of document clustering, we cannot use the optimal

clustering results for comparison.

To compare our results with the optimal values, we gener-

ate 6 additional synthetic datasets using the approach in [5,

6]. In particular, we choose k random points from the d-

dimensional space as the cluster centers, and then add n/k

gaussian random points (with variance 1) around each cen-

ter. The configurations of the 6 datasets are listed in Table 1.

Table 1: Configurations of 6 additional synthetic datasets.

Dataset
ID

Number of
Objs (n)

Dimension(d) k

1 10000000 8 10

2 1600000 10 10

3 1600000 12 12

4 160000 20 12

5 1000000 8 40

6 10000000 4 20

Figure 7 shows the clustering results for the 6 synthetic

datasets in Table 1, with the RSS normalized to the optimal

value. For the streaming algorithm, the achieved RSS is

34.8% larger than the optimal value in average, ranging from

11.5% to 86.4%. In contrast, our collaborative algorithm
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Figure 9: Normalized number of iterations for the 6 syn-

thetic datasets.

achieves more closer clustering results to the optimal value,

with the RSS only 7.4% larger than the optimal value in

average, ranging from 0% to 25.7%.

Figure 8 and 9 show the normalized execution time and

number of iterations for the 6 synthetic datasets. Our col-

laborative approach reduces the number of iterations by

18.9%-79.1%, causing the execution times to be shortened

by 13.3%-73.2%.

7. RELATED WORK

There has been a lot of work on clustering algorithms,

especially the K-means clustering which is one of the funda-

mental algorithms in machine learning [14, 15, 34, 23, 7, 6,

20]. Lloyd’s approach is the most popular approach in prac-

tice, due to its simplicity [26], but its clustering quality is

limited. In the theory community, a number of researchers

made great efforts to improve the clustering quality. Inaba

et al [19] presented an exact algorithm for the K-means prob-

lem, with the running time of O(nkd), and Vega et al [10],

Har-Peled et al [17], Kumar et al [24] presented some poly-

nomial time approximation schemes. However, these algo-

rithms are highly exponential in k, and are impractical even

for small n, k, and d, where n is the number of objects, k is

the number of clusters, and d is the number of dimensions.

In recent years, Ostrovsky et al [28] and Arthur et al [6] pre-

sented K-Means++, a probability-based seeding technique,

which can be leveraged together with Lloyd’s algorithm to

obtain good clustering quality and performance.

As the data volume is getting more tremendous, researchers

proposed streaming models for data clustering. In particu-

lar, datasets are far too large to fit in main memory and

are typically stored in secondary storage devices. Therefore,

the datasets are constrained to be accessed in a streaming

way for efficiency [15]. Munro and Paterson first studied the

space requirement of selection and sorting as a function of

the number of passes over the data [27], and Henzinger et

al formalized the model in [18]. Charikar et al presented

a constant-factor approximation algorithm for the K-center

problem, which is very close to the K-means problem [9].

Guha et al proposed a divide-and-conquer approach for the

streaming K-means clustering [16, 15], as we have discussed

in Section I. Comparing with existing streaming divide-and-

conquer algorithm [15], our approach introduced an extra

pass to access the input dataset for collaborative merging

and seeding, and the experimental results show that the cost

is worthwhile.

Meanwhile, there also has been a lot of work on the paral-

lel K-means algorithm and implementation, such as parallel

implementation based on SIMD hypercube network [25, 29],

master/slave message passing architecture [11, 13, 21, 22,

35], shared memory multi-core processor [30, 3], GPU [12]

and MapReduce programming model [36, 2]. Based on the

probability-based seeding approach K-Means++ [6], Bah-

mani et al proposed a parallel seeding approach that can

find a good initial set of centers rapidly [8]. Our approach

can work together with the parallel seeding technique, with

the found seeds being our initial set of centers for iteration.

8. CONCLUSION

This paper presents a collaborative divide-and-conquer al-

gorithm to significantly improve the state-of-the-art divide-

and-conquer K-means clustering algorithm, which streams

the data from disk into memory and operates on the parti-

tioned streams, improves temporal locality but can misplace

objects in clusters since different partitions are processed

locally. Our approach is based on two key insights. First,

we introduce a break-and-recluster procedure to identify the

clusters with misplaced objects. Second, we introduce col-

laborative seeding between different partitions to acceler-

ate the convergence inside each partition. Compared with

the streaming algorithm using a number of wikipedia web-

pages as our datasets, our collaborative algorithm improves

its clustering quality by up to 35.3% with an average of 8.8%

while decreasing its execution times from 0.3% to 80.1% with

an average of 48.6%.
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