
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220799098

An adaptive task creation strategy for work-stealing scheduling

Conference Paper · April 2010

DOI: 10.1145/1772954.1772992 · Source: DBLP

CITATIONS

29
READS

67

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Optimization on Resource Conflict View project

Lei Wang

Chinese Academy of Sciences

22 PUBLICATIONS 280 CITATIONS

SEE PROFILE

Yuelu Duan

University of Illinois, Urbana-Champaign

2 PUBLICATIONS 45 CITATIONS

SEE PROFILE

Fang Lu

Chinese Academy of Sciences

16 PUBLICATIONS 141 CITATIONS

SEE PROFILE

Xiaobing Feng

Chinese Academy of Sciences

112 PUBLICATIONS 2,105 CITATIONS

SEE PROFILE

All content following this page was uploaded by Lei Wang on 12 September 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220799098_An_adaptive_task_creation_strategy_for_work-stealing_scheduling?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220799098_An_adaptive_task_creation_strategy_for_work-stealing_scheduling?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Optimization-on-Resource-Conflict?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Wang-465?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Wang-465?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Wang-465?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuelu-Duan?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuelu-Duan?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Illinois-Urbana-Champaign?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yuelu-Duan?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fang-Lu-9?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fang-Lu-9?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fang-Lu-9?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaobing-Feng?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaobing-Feng?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaobing-Feng?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Wang-465?enrichId=rgreq-7921df4550a8c60fd93031be035fbc92-XXX&enrichSource=Y292ZXJQYWdlOzIyMDc5OTA5ODtBUzo1Mzc2NjA3Mzc3MDM5MzZAMTUwNTE5OTcxNzI2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

An Adaptive Task Creation Strategy
for Work-Stealing Scheduling

Lei Wang
1Institute of Computing Technology,

Chinese Academy of Sciences
2Graduate University of Chinese

Academy of Sciences
Beijing, China
wlei@ict.ac.cn

Huimin Cui
1Institute of Computing Technology,

Chinese Academy of Sciences
2Graduate University of Chinese

Academy of Sciences
Beijing, China

cuihm@ict.ac.cn

Yuelu Duan
Department of Computer Science,

University of Illinois at
Urbana-Champaign
duan11@illinois.edu

Fang Lu
1Institute of Computing Technology,

Chinese Academy of Sciences
2Graduate University of Chinese

Academy of Sciences
Beijing, China
flv@ict.ac.cn

Xiaobing Feng
Institute of Computing Technology,

Chinese Academy of Sciences
Beijing, China
fxb@ict.ac.cn

Pen-Chung Yew
1Department of Computer Science and
Engineering, University of Minnesota,

MN 55455 U.S.A
2Institute of Information Science,

Academia Sinica, Taiwan
yew@cs.umn.edu

Abstract
Work-stealing is a key technique in many multi-threading program-
ming languages to get good load balancing. The current work-
stealing techniques have a high implementation overhead in some
applications and require a large amount of memory space for data
copying to assure correctness. They also cannot handle many ap-
plication programs that have an unbalanced call tree or have no
definitive working sets.

In this paper, we propose a new adaptive task creation strat-
egy, called AdaptiveTC, which supports effective work-stealing
schemes and also handles the above mentioned problems effec-
tively. As shown in some experimental results, AdaptiveTC runs
2.71x faster than Cilk and 1.72x faster than Tascell for the 16-queen
problem with 8 threads.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures; D.3.4 [Pro-
cessors]: Compilers, Run-time environments

General Terms Design, Languages, Management, Performance

Keywords adaptive, work-stealing, task granularity, backtracking
search

1. Introduction
With the wide adoption of multi-threading techniques, many par-
allel programming languages such as Cilk [4] [10], X10 [5], and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO’10 April 24–28, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-60558-635-9/10/04. . . $10.00

OpenMP3.0 [1], have provided their support for task-level paral-
lelism. They define conceptually similar concurrent constructs, that
include Cilk’s spawn-sync, X10’s asyn-finish and OpenMP3.0’s
omp task-taskwait. In their support, work-stealing is one of the
key techniques used in the runtime system to help load balancing.
Generally, in work-stealing, each thread maintains a double-ended
queue (called d-e-que, in this paper) for ready tasks. An owner
thread pushes and pops ready tasks to and from its own d-e-que’s
tail end. Each thread steals tasks from the head of the d-e-que in
other threads when its own d-e-que is empty. Hence, when stealing
tasks, the thief thread can run in parallel with the victim thread’s
execution. A thread could also suspend a waiting task to execute
other ready tasks. With this scheme, work-stealing achieves good
load balancing [4] [10] [3].

However, there are still problems in the current work-stealing
techniques. Firstly, the overhead of task creation and d-e-que man-
agement could be very high in some applications. Secondly, in
some popular applications such as backtracking search, branch-
and-bound search and game trees, the overhead of allocating and
copying workspaces for each child task to assure correctness, called
workspace copying [13], could be quite high, and it could badly
hurt the performance. Finally, the d-e-que is often implemented as
a fixed-size array in Cilk, which is prone to overflow.

Tascell [13] uses an improved scheduling technique based on
backtracking to solve some of these problems. In Tascell, the task
is stored in a thread’s execution stack instead of in a d-e-que. When
a thread receives a task request from an idle thread, it backtracks
through the chain of nested function calls, and creates a task for the
requesting thread. It then returns to the top frame of its execution
stack and resume its own execution. Hence, when responding to
a request, the responding thread cannot run in parallel with the
request thread. Tascell also delays workspace copying as much as
possible. Its copying overhead could thus be significantly reduced,
and it could often achieve a higher performance than Cilk in some
important applications [13].

However, Tascell still could not achieve good load balancing in
some applications. For example, Tascell cannot suspend a waiting
task (and has to wait for its child tasks to complete) because it uses
its execution stack to store the task information. If a waiting task
is suspended and starts to run other ready tasks, the stack frame of
the waiting task will be destroyed and cannot be resumed. Taking
16-queens as an example, the waiting time for child tasks could be
as high as 16.73% of the total execution time with 8 threads (see
section 5.2).

In this paper, we proposed a new adaptive task creation strat-
egy, called AdaptiveTC, to support work-stealing. When execut-
ing a spawn statement, AdaptiveTC can generate a task, a function
call (a fake task, refer to Section 3), or a special task. The task is
responsible for keeping idle threads busy; the fake task is respon-
sible for improving performance; and the special task is used to
switch a thread from a fake task to a task for good load balanc-
ing. In addition, AdaptiveTC introduces a new data attribute, call
taskprivate, for workspace variables common in applications such
as backtracking search, branch-and-bound search and game trees.
Allocating and copying a new taskprivate variable for a child task
is only performed in the task, not in the fake task. AdaptiveTC can
adaptively switch between tasks and fake tasks to get a better per-
formance.

In AdaptiveTC, a specified number of tasks are created initially
to keep all threads busy, and then a fake task is executed in each
thread. During the execution, except when some thread becomes
idle, at which point a busy thread generates a special task to tran-
sition back from the fake task to a task, each busy thread would
avoid creating more tasks into its d-e-que. As a result, the num-
ber of tasks created is smaller than that of Cilk. Hence, it reduces
the overhead of task creation, d-e-que management, and workspace
copying, without sacrificing good load balancing, and is less prone
to d-e-que overflow. The cost of managing d-e-que in AdaptiveTC
is thus much less than that of managing nested functions on the
execution stack in Tascell.

Our experiments show that AdaptiveTC outperforms Cilk and
Tascell in many common applications. For example, it runs 2.71
times faster than Cilk and 1.72 times faster than Tascell for the 16-
queen problem with 8 threads (see section 5.1).

The contributions of this paper are:

• An adaptive task creation strategy is proposed to support work-
stealing techniques for better load balancing and lower sys-
tem implementation overhead. It reduces the number of tasks
created with a better control of the task granularities, hence,
could significantly reduced the overhead of task creation. It is
also less prone to d-e-que overflow. AdaptiveTC is very suit-
able for many applications that have no definitive working sets,
and could achieve a much better load balancing for applications
with unbalanced call trees.

• A new data attribute taskprivate is introduced for workspace
variables to improve the programmability and to further reduce
the cost of workspace copying, and thus achieving a higher
performance.

The rest of the paper is organized as follows. We first present
some related work in Section 2. In Section 3, we introduce our
adaptive task creation strategy. In Section 4, we describe the im-
plementation of our approach. Some experimental studies are pre-
sented in Section 5, and in Section 6, we conclude our paper.

2. Related work
Cut-off strategies: several prior studies [16] [14] [9] [8] [7] used
cut-off strategies to control the recursion depth of function calls
during the task generation, and thus could reduce the overhead of

task creation. These strategies could also control the task granulari-
ties by reducing the number of small tasks. A basic cut-off strategy
usually specifies a depth of recursion in a computation tree (or call
tree) beyond which no tasks could be created (see Figure 1.a). It has
been found that such strategies work very well for balanced com-
putation trees. However, for unbalanced computation trees, such
cut-off strategies are known to cause starvation, i.e. some threads
might be forced to become idle for lack of tasks to work on [14].

Three approaches were generally used to implement a cut-off
strategy. The first is to ask the programmer to provide a cut-off
depth for the recursion [16] [14], or using the runtime system to
set a common default depth, for all applications [9]. Both are very
simple, but cannot adapt to a changing environment. The second
approach is batching, i.e. to set the cut-off depth according to the
current size of the d-e-que and adaptively control the granularity
of parallel tasks [8]. However, this approach needs the program-
mers to set a sequential processing threshold, and to carry out per-
formance tuning manually. The third approach is profiling [7]. It
adopts a working set profiling algorithm, and then uses the profil-
ing information to perform cut-offs. It works well for some divide-
and-conquer applications in which all parallel tasks deal with dif-
ferent parts of a working set. However, it becomes less effective in
some important applications such as backtracking search, branch-
and-bound search and game trees, in which there are no definitive
working sets during the execution.

The AdaptiveTC can adaptively create tasks to keep all threads
busy, and also adaptively control the task granularities to reduce the
overhead of task creation.

Workspace copying: This problem is introduced by work-
stealing scheduling. In some popular applications such as back-
tracking search, branch-and-bound search and game trees, solution
space variables and states of nodes, such as chessboards and pieces,
are all stored in workspaces. In order to assure correctness, pro-
grammer needs to allocate memory space, and copy the value of
the parent’s workspace variables to each child task.

The work proposed in [2] pointed out that workspace variables
increase programming difficulties. Workspace variables are usually
C arrays or pointers of data structure, if a pointer is used in an
OpenMP 3.0’s firstprivate directive, only the pointer is captured.
In order to capture the value of the data structure, the program-
mer must deal with them inside each task, including proper syn-
chronization, and it could become quite complicated to write such
parallel programs. We found that by supporting such workspace
variables in a programming language such as providing a special
attribute for those workspace variables, it significantly improves
the programmability of those applications.

Cilk supports SYNCHED variables to conserve space re-
sources [11]. A SYNCHED variable has a value of 1 if the sched-
uler can guarantee that there is no stolen child task in the current
task and 0 otherwise. By testing the SYNCHED variable, it would
allow some child tasks to reuse the same memory space and store
their private data so that the space overhead could be drastically
reduced. However, all child tasks still have to copy the data from
their parent tasks, and hence, the time overhead is not reduced.

In AdaptiveTC, we propose a new data attribute taskprivate
that works with the controlled task granularities to reduce both
space and time overhead, and also improves the programmability
as mentioned before.

D-e-que: In [6], it presents a work-stealing d-e-que using a
buffer pool that does not have the overflow problem. In [15], it
proposes techniques to expand the size of a d-e-que with automatic
garbage collection. As AdaptiveTC pushes fewer tasks into d-e-
ques, it is less prone to overflow.

Adaptive work-stealing scheduler: SLAW [12] adaptively
switches between work-first and help-first scheduling policies,

which has the possibility of running parallel programs to com-
pletion when the sequential version overflows stack. In contrast,
AdaptiveTC adaptively switches between tasks and fake tasks to
get a better performance.

3. An adaptive task creation strategy for
work-stealing

As mentioned in Section 1, when executing a spawn statement,
AdaptiveTC can generate a task, a function call (a fake task), or
a special task. The task is pushed to the d-e-que’s tail end and can
be stolen by idle threads; the fake task is only a plain recursive
function and is never pushed into the d-e-que; the special task
is pushed into the tail of d-e-que and marks a transition point
from the fake task back to the task. Allocating and copying a
new taskprivate variable for a child task is only performed in a
task, not in a fake task. AdaptiveTC can adaptively switch between
tasks and fake tasks to get a better performance. In AdaptiveTC,
a specified number of tasks are created initially to keep all threads
busy. During the execution, except when some thread becomes idle,
all busy threads would avoid creating additional tasks into their d-
e-ques. A randomized work-stealing algorithm with our adaptive
task creation strategy is described in more detail as follows.

If the number of active threads is capped at N, the cut-off of
a recursive call tree beyond which no tasks should be created, is
initially set to �logN� by the runtime system. The depth of the
recursive call chain for the original task is considered to be 0.

At the beginning, all d-e-ques are empty. Then, the root task
is placed in one thread’s d-e-que, while other threads start work
stealing. A thread obtains work by popping the task from the d-e-
que’s tail end, and continues executing this task’s instructions until
this task spawns, terminates, or reaches a synchronization point, in
which case, it performs according to the following rules.

Each active worker/victim thread (a victim thread is a thread
whose tasks in its d-e-que have been stolen by other worker threads)
will use the following scheme:

Spawn: (a spawn statement, task α spawns a child task β)

1. As shown in Figure 1.a, when the depth of task α (the depth
of the recursive call tree) is smaller than the cut-off, a thread
will push task α into the tail of the d-e-que, generate a new task
β, and begin to execute task β. If the cut-off has been reached,
a thread will not push task α into the tail of the d-e-que, but
continue the main execution of recursive functions down the
call tree, called the fake task (because no real task was generated
for its execution), without creating new tasks, thus will not incur
any task creation overhead.

2. However, before the fake task continues to execute down the re-
cursive call tree, it will first check whether there is an idle thread
waiting to steal tasks. If not, no new tasks will be generated; if
yes, it creates a special task for itself to resume, and pushes the
special task into the tail of its d-e-que, and then continues its
own execution. The depth of the special task’s child will be set
to 0. As the depth of the special task’s child task is 0, it gener-
ates and pushes more child tasks into its own d-e-que later on.
Other threads could steal the descendant tasks. The special task
in the d-e-que marks a transition point from the main fake task
to its child tasks. It stores all of the task information of the main
fake task, and thus cannot be stolen. It also has to wait for its
child tasks to complete before its resumption for execution; oth-
erwise, we will not be able to resume the main fake task when
we complete the child tasks.

Terminate: (a return statement, task α terminates and returns
to its parent task γ)

• The task α is popped from the d-e-que’s tail end first. If task α
is the root task, the schedule ends. Otherwise, a thread checks
its d-e-que. (1) If the d-e-que contains any task, the thread will
pop a task γ from the d-e-que’s tail end and begin to execute
task γ. (2) If the d-e-que is empty, and task α is spawned by
the thread, i.e. the parent task γ is stolen by another thread,
the thread will return immediately. (3) If the d-e-que is empty,
and task α is stolen by the thread, i.e. the thread returns to the
runtime system code, the thread will inform the parent task γ
that task α is completed, and check the status of the parent task
γ. If the parent task γ is suspended, and all the child nodes of
task γ are completed, the thread will begin to execute task γ;
otherwise, the thread will begin its work stealing.

Reaching a synchronization point: (a sync statement, task α
reaches a synchronization point)

• A thread checks whether all the child nodes of task α are
completed. If yes, it will execute the instruction following the
synchronization point in task α. If no, (1) if task α is a task, the
thread will pop task α from the d-e-que’s tail end, suspend task
α, and then start stealing other task; (2) if task α is a special
task, the thread will wait for its child tasks to complete before
its resumption of execution.

Each thief thread will use the following scheme:
Steal: (when a thread begins work stealing)

1. A thread randomly selects a victim thread, and tries to steal task
from the victim thread. If it succeeds, the thread will execute
the new stolen task; if not, it will inform the victim thread that
it needs a task, and try again, picking another victim thread at
random. When a thief thread is attempting to steal a special
task, it will steal the special task’s child task instead, if there is
any, to avoid the problem mentioned above (i.e. the resumption
of the original fake task).

2. The thread executes the new stolen task, restores the task’s state
first, and then goes to the point after a spawn or synchronization
instruction according to the new stolen task’s state and executes
the task’s instructions.

In Figure1, there are 4 threads (p0, p1, p2, p3) that execute
nodes in the computation tree (i.e. call tree), and the default cut-
off is 2. Note that not all of the nodes in the tree are generated
as tasks by the threads. Figure 1.a illustrates the starting stage, in
which each thread executes a sub-tree, respectively, from nodes 2,
41, 7 and 44. During the execution, p3 steals task 0 from p1, and
suspends task 0 as neither child task 1 nor 40 is completed. p3 then
steals task 40 from p1, and continues to execute node 44 (the second
child of task 40), but not node 41 (the first child of task 40), because
node 41 was already under execution by p1. Each thread will then
execute nodes down its respective sub-tree sequentially.

Then, at the beginning stage of Figure 1.b, p0, p1 and p3 have
finished these sub-trees, respectively, from nodes 2, 41 and 44; p2
is executing a certain node in the sub-tree rooted at node 7, and
there is only task 1 in p2’s d-e-que. When p1 steals task 1 from p2,
it suspends task 1 as its child node 7 is not completed yet. There
are no tasks to be stolen at this time. As the sub-tree rooted at the
node 7 is larger than the other sub-trees, it is very likely that when
p2 is executing a node in the sub-tree, say node 12, it could find
that some other thread needs a task. As described in worker thread
Spawn’s step 2, p2 will create a special task 12 for node 12, and
push it into the tail of its d-e-que. p2 will then create a task and
push it into the tail of d-e-que for nodes 13 and 14 sequentially. In
one scenario, p0 would steal task 13 from p2, and p1 would steal
task 14 from p2. At this point, as H >= T in the p2’s d-e-que,
there is no task in the p2’s d-e-que to steal. p3 would steal task 13

from p0, suspend it as neither child tasks 14 nor 24 is completed,
and then steal task 24 from p0 (illustrated in Figure 1.b). Now the
threads p0, p1, p2 and p3 execute sub-trees 25, 18, 15 and 30.

Also, as illustrated in Figure 1.c, p2 finishes the sub-tree rooted
at node 15 and returns to node 14. As task 14 is stolen by p1,
p2 will return to node 13 immediately. Also, because task 13 is
stolen as well, p2 will return to node 12 immediately and execute
the sub-tree rooted at node 35. In this way, our adaptive task
creation strategy only generates 20 tasks, while Cilk generates 49
tasks. Even though, Cilk could use its cut-off strategy to reduce the
number of tasks generated, it could be at the risk of creating an
unbalanced call tree.

With the same starting stage in Figure 1.a, Tascell would make
p0 wait on task 1 for its child task 7’s completion after it finishes
its own sub-tree rooted at node 2. Thus, only p1, p2 and p3 could
expect to execute the sub-tree rooted at node 7. However, as illus-
trated in Figure 1.b and 1.c, with the strategy of AdaptiveTC, all the
four threads could expect to execute the sub-tree rooted at node 7
together, which would achieve better dynamic load balancing than
Tascell.

4. AdaptiveTC - A comprehensive parallel
programming environment

AdaptiveTC is a comprehensive parallel programming environment
that includes a parallel programming language, a compiler and a
runtime system. The parallel language is an extended Cilk. The key
features of the Cilk language include the inclusion of parallelism
and synchronization semantics through the spawn and sync key-
words. AdaptiveTC extends the Cilk language further by provid-
ing the taskprivate keyword to specify data storage. Our compiler
translates the extended Cilk program to a C program that could take
advantage of an improved runtime library. The compiler generates
five different versions of the code for each task, and these five ver-
sions will each generate a task, a function call (a fake task), or a
special task. AdaptiveTC uses a finite state machine (FSM) in each
thread, and executes a different version of the code depending on
the state the thread is in. Transition from one state to another only
requires a few concise steps followed by a transition to a different
version of the code. This FSM implementation makes it easier to
switch a thread from fake tasks to tasks, and then generate more
tasks for other threads to steal, while at the same time minimiz-
ing the number of tasks stored in the d-e-que and the amount of
workspace copying.

4.1 A new data attribute – taskprivate
A variable with a taskprivate attribute will have no storage asso-
ciation with the same named variable in other tasks. A taskprivate
variable inherits the value of its parent task’s taskprivate variable.
Only parameters or local variables can be declared as taskprivate,
and taskprivate could be declared on a pointer or an array. For ex-
ample,

taskprivate: (*address) (an expression to calculate the size
of the taskprivate variable);

In the n-queens problem, it computes the number of all possi-
ble placements for n queens in a chessboard with only one queen
in any vertical, horizontal and diagonal line. It is a typical back-
tracking search problem. The implementation of the problem needs
to maintain a chessboard that indicates all current positions of the
queens. The chessboard variable can be declared as a taskprivate in
AdaptiveTC as follows:

// depth is the numerical ID of a queen; n is the total number of
queens; x[] is the chessboard.

cilk int nqueens(int depth, int n, char* x)
taskprivate: (*x) (n * sizeof(char));

1
0

40
0

T,H

1 40H
T

T,H

H
T

P0 P1 P2 P3

7

8 12

13 35

14 24 36 37

38 39

9 11

16 17

15 18

19 23

25 30

31 32

1

26 27

Cut-off

10

28

29

33 34

22

20 21

2

3 5

4 6

41

42 43

0

40

44

45 46

47 48

(a)

7

8 12

35

36 37

38 39

9 11

16 17

15

Cut-off

10

2

3 5

4 6

41

42 43

0

40

44

45 46

47 48

1

14

18

19 23

20 21

22

25

26 27

28

29

13

24

30

31 32

33 34

24
13 14

T,H
14
13
12
1 24H

T
T,H

H
T

P0 P1 P2 P3
(b)

24
13 14

36
35
12
1 24H

T
T,H

H
T

P0 P1 P2 P3

H

T

(c)

Figure 1. The status of a call tree and d-e-ques in active threads.
In the call tree, nodes with a dotted boundary are executed sequen-
tially in a thread and are not created as tasks. Solid boundary nodes
are created as tasks, among which the grid-shaded ones are not
pushed into d-e-ques and the non-shaded ones are pushed into d-
e-ques. The grey ones are suspended. Node 12 is special task. The
square nodes are executed in thread p0, the triangle ones are in p1,
the circle ones in p2, and the hexagon ones in p3. In the d-e-ques,
T indicates the tail of the d-e-que, H indicates the head of the d-
e-que. Figure 1 (a) shows the starting stage. In Figure 1 (b), the
special task 12 can be pushed into p2’s d-e-que. Figure 1 (c) shows
the next stage of Figure 1 (b).

As the chessboard variable could be accessed and modified by
multiple tasks concurrently, in Cilk, the programmer needs to allo-
cate memory space, and copy the value of the parent’s chessboard
variable to each child task in order to assure correctness. There are
two ways to do it: one is to use Cilk alloca() function to allocate a
new chessboard variable for each child task; the other is to allocate
a new chessboard variable using malloc function, and free it at the
end of the child task. In either way, the programmer must take spe-
cial care to the chessboard variable. Cilk also provides SYNCHED
variables to conserve memory space [11]. Hence, the taskprivate
data attribute we proposed significantly improves the programma-
bility of those applications.

Sudoku is a logic-based, combinatorial number-placement puz-
zle. The objective is to fill a 9*9 grid so that each column, each row,
and each of the nine 3*3 blocks contains the digits from 1 to 9 only
one time each. Appendix A is an AdaptiveTC program for Sudoku.
Here, the program Sudoku finds all solutions for a given grid. The
parameter st is a taskprivate variable.

In AdaptiveTC, fake tasks and tasks handle taskprivate variable
in different ways. In fake tasks, the taskprivate keyword is ignored.
But in tasks, allocating and copying a new taskprivate variable
for a child task is performed in order to assure correctness. The
chessboard variable is handled as follows:

In a fake task,
x[depth] = j;
sn += nqueens(depth + 1, n, x);

And in a task,
char *tmp x;
x[depth] = j;
tmp x = Cilk alloca(n * sizeof(char));
memcpy(tmp x, x, n * sizeof(char));
sn += nqueens(depth + 1, n, tmp x);

In AdaptiveTC, as the number of tasks created is very small, it
reduces the cost of workspace copying, and thus achieves a higher
performance.

4.2 AdaptiveTC compilation strategy
To support the adaptive task creation strategy and to achieve a high
performance, the AdaptiveTC compiler generates five different ver-
sions of the code for each task: a fast version, a check version, a
fast 2 version, a sequence version and a slow version. These five
different versions provide the support of various work required at
different stages of the execution. Figure 2 shows the relationship
of these five versions at runtime during the adaptive task gener-
ation. The fast, fast 2 and slow versions generate tasks. The se-
quence version generates fake tasks. The check version is similar
to the sequence version when no other thread needs to steal a task.
However, when any other thread needs a new task, it will generate
a special task for its current sequential execution, and push it into
the tail of d-e-que, so it could generate its child tasks into the d-e-
que. The AdaptiveTC compiler ignores the taskprivate keyword in
the sequence version and the fake tasks part of the check version,
but allocates and copies a new taskprivate variable for a child task
in the fast, fast 2, slow versions and the special task part of the
check version (see section 4.1). The runtime system links together
the actions of the five versions to produce a complete AdaptiveTC
implementation with a high performance.

Appendix B shows a fast version of a Sudoku task in Adap-
tiveTC. When the fast version runs for the first time, the depth of
the recursive call tree is 0. A task is created at the entry of the
fast version and is freed at its exit. 1) When the depth is smaller
than the cut-off, the state of the fast version is saved, and the task
is pushed to the tail of the d-e-que. Then, the fast version of the
child task is called with the depth incremented by 1. After the child
task returns, it pops the saved task from the tail of the d-e-que, and

depth < cut-off

fast check sequence

!need_task

need_task

slow

depth < 2*cut-off

fast _2

if(need_task)
 wait_children

else

depth < cut-off

Worker thread

Thief thread

depth=0 depth=0
else

else

Figure 2. The relationship of the five versions in AdaptiveTC

check whether the task has been stolen. If yes, the fast version re-
turns with a dummy value immediately. If not, it continues to run
the next child task. 2) When the depth reaches cut-off, the fast ver-
sion will call the check version without pushing the task into the
d-e-que. In Figure 1, nodes 0, 1 and 40 use one of the fast versions
before the cut-off, and nodes 2, 41, 7 and 44 use the fast versions
beyond the cut-off.

In the fast version, all sync statements are translated to no-
ops. Except for a special task, only parent tasks are allowed to be
stolen, therefore all child nodes have completed when executing
sync statements in the fast version. No operations are thus required
for a sync statement.

Appendix C is a check version of a Sudoku task in AdaptiveTC.
The check version checks whether other threads need tasks. If not,
it calls its child task’s check version recursively. If yes, it generates
a special task, pushes the task into the tail of the d-e-que, and
calls the child task’s fast 2 version with its depth set to 0. After
the child task’s fast 2 version returns, it pops the special task and
check whether its child task has been stolen. If yes, the stolen flag
variable is set to true. The check version continues to run the next
child task’s fast 2 version until all child tasks are executed (using
their fast 2 version). At the synchronization point, if the stolen flag
variable is true, the special task will wait until all its child tasks are
completed. In Figure 1, node 3, 5, 4, 6, 8, 9, 11, 10, 42, 43, 45, 46,
47 and 48 will use their check versions. The special task is node 12.

The fast 2 version is a variant of the fast version with two
differences. One is that the cut-off in fast 2 is twice of that in the
fast version. The other is that when the cut-off is reached, the fast 2
version will call the sequence version, but not the check version
as the fast version does. When the fast 2 version is executed, the
number of tasks generated by the fast version is not enough to keep
all threads busy, so more tasks are generated in the fast 2 version.
The sequence version is a regular recursive function. In Figure 1,
nodes 13, 14, 35, 36, 37 and 24 use their fast 2 version before the
cut-off, and nodes 15, 18, 25, 30, 38 and 39 use the fast 2 version
beyond the cut-off. Other nodes use their sequence version.

The slow version is used at the start of all stolen tasks. When
a thief thread steals a task, the slow version of the task will be
executed. It restores its program counter using a goto statement,
and also restores its local variables and the depth for the task.
Depending on whether the depth reaches the cut-off yet, the slow
version will call either the fast version or the check version. At the
synchronization point, a call to the runtime system, which checks
whether all the child nodes of the task are completed, is inserted
by compiler. If all the child nodes are completed, the thread will
execute the next instructions of a synchronization point. If not, the
thread will pop the task from the d-e-que’s tail end, suspend the
task, and then start stealing other task.

4.3 The runtime system
Cilk’s work-stealing mechanism is based on a Dijkstra-like, shared-
memory, mutual exclusive protocol called the THE protocol [10].
As both victim and thief operate directly on the victim’s d-e-que,

Worker / Victim 0

push(){ T++; }
pop(){
 T--;

MEMBAR;
 if(H > T){
 T++;
 lock(worker.L);
 T--;
 if(H > T){
 unlock(worker.L);
 return FAILURE;
 }
 unlock(worker.L);
 }
 return SUCCESS;
}

Worker / Victim 1

pop_specialtask() {
 lock(worker.L);
 T--;
 if(H > T){

 H = T;
 unlock(worker.L);

return FAILURE;
 }
 unlock(worker.L);
 return SUCCESS;
}

Worker / Victim 2

sync_specialtask(){
 while(1){

 lock(worker.L);
 if (!children(f)) {

unlock(worker.L);
return;

}
unlock(worker.L);
usleep(100);

 }
}

(a) (b) (c)

 Thief 0

steal(){
 lock(victim.L);
 H++;

MEMBAR;
 if(H > T){
 H--;
 stolen_num ++;
 if(stolen_num > max_stolen_num)
 need_task = 1;
 unlock(victim.L);
 return FAILURE;
 }
 stolen_num = 0;
 need_task = 0;
 unlock(victim.L);
 return SUCCESS;
}

 Thief 1

steal_specialtask(){
 lock(victim.L);
 H += 2;

MEMBAR;
 if(H > T){
 H -= 2;
 stolen_num ++;
 if(stolen_num > max_stolen_num)
 need_task = 1;
 unlock(victim.L);
 return FAILURE;
 }
 stolen_num = 0;
 need_task = 0;
 unlock(victim.L);
 return SUCCESS;
}

(d) (e)

Figure 3. Pseudo code of a simplified THE protocol. (a), (b) and
(c) show the action performed by a victim thread; (d) and (e) show
the action of a thief thread.

race conditions will arise when a thief tries to steal the same task
that its victim is attempting to pop. The THE protocol resolves
such a race condition, and AdaptiveTC follows the THE protocol
to implement the special task in the d-e-que.

Figure 3 shows the pseudo code of a simplified THE protocol
used in AdaptiveTC. The code assumes that the d-e-que is imple-
mented as a task array. T is the tail of the d-e-que, the first unused
element in the array, and H is the head of the d-e-que, the first task
in the array. Indices grow from the head to the tail so that under
normal conditions, we have T >= H .

In fast, fast 2 and slow versions, the worker thread uses a push
operation to push a task into the tail of d-e-que before calling a
parallel version. It also uses a pop operation to pop the task after
calling the parallel version. In the check version, the worker thread
uses a push operation to push a special task into the tail of the d-e-
que before calling the fast 2 version. It performs a pop specialtask
operation to pop the special task after calling the fast 2 version, and
a sync specialtask operation to wait for the child tasks to complete
at the synchronization point. In a pop specialtask operation, when
the special task’s child task is stolen, H is reset to T. The intention
of this reset is to ensure the special task to be the head of the d-e-
que because the special task could never be stolen.

A thief needs to get victim.Lock before attempting to steal the
task at the head of d-e-que. Hence, only one thief may steal from
the d-e-que at a time. When a thief attempts to steal a special task,
it will steal the special task’s child task.

To notify a busy thread that some other idle thread needs tasks,
the thief thread (an idle thread) increases the stolen num of the
victim thread (a busy thread). When the stolen num exceeds the
max stolen num, the need task in the victim thread is set to true.

Nqueen-
array(n)

The n-queens problem. It uses an array to record whether con-
flicts occur, and is more time efficient.

Nqueen-
compute(n)

The n-queens problem. It traverses the chessboard to find out
whether conflicts occur, and is more memory efficient.

Strimko A logic puzzle. The objective is to fill in the given 7*7 grid so
that each column, each row, and each stream contain the digits
from 1 to 7 only once.

Knight’s
Tour

To find all solutions on a 6*6 chessboard. The knight is placed
on an empty chessboard and moving according to the rules of
the chess. It needs to visit each square on the chessboard exactly
once.

Sudoku To find all solutions for a given grid.
Pentomino(n) To find all solutions to the Pentomino problem with n pieces

(using additional pieces and an expanded board for n > 12).
Fib(n) To compute recursively the n-th Fibonacci number.
Comp(n) To compare array elements ai and bj for all 0 <= i, j < n.

Table 1. Benchmark programs

As a result, the victim thread would notice that other threads
need tasks. When the thief thread succeeds in stealing a task, it
clears the victim thread’s stolen num and need task. The default
max stolen num is set to 20 in our runtime system.

pop specialtask (in Figure 3.b): When H < T , no child task
of the special task is stolen; otherwise, the child task is stolen, and
H is reset to T. The intention of this reset is to ensure the special
task to be the head of the d-e-que as the special task is never stolen.

sync specialtask (in Figure 3.c): the special task awaits its
child task to complete.

steal specialtask (in Figure 3.e): the special task can never be
stolen, and an attempt to steal it will lead to its child tasks being
stolen.

5. Experimental results
In this section, we present some experimental results and try to
compare the performance of our AdaptiveTC with those in Cilk-
5.4.6 and Tascell. We first give detailed experimental results, and
then analyze the overheads of three systems, finally give the perfor-
mance in unbalanced trees to evaluate the dynamic load balancing.

We perform such measurements on Intel multi-core SMP, 2-
processor quad core Intel Xeon E5520 (2.26GHz, 8G memory).
We compile all parallel benchmark programs with the Cilk-5.4.6
compiler using gcc with option -O3. All serial benchmark programs
are compiled with gcc -O3 as well. The speedup is computed using
the serial execution time as the baseline, and using the median
execution time of 3 successive executions of its corresponding
parallel version. We evaluate the performance of our AdaptiveTC
using the benchmark programs in Table 1.

5.1 Detailed experimental results
The results in Figure 4 and Figure 5 show a significant performance
improvement of the AdaptiveTC over Cilk in the range of 1.15x to
2.78x using 8 threads. In addition, from Figure 4 we can see that
AdaptiveTC has a good scalability when the threads number in-
creases. In Nqueen-array, Strimko, Knight’s tour, Sudoku and Pen-
tomino, reducing the cost of the workspace copying is the major
performance contributor. In Nqueen-compute, fib and comp, reduc-
ing the cost of creating tasks and managing d-e-ques is another ma-
jor performance contributor. It shows that the proposed adaptive
task creation strategy in AdaptiveTC could be very efficient and
effective in the implementation of work-stealing strategy.

AdaptiveTC also achieves a higher performance than Tascell for
most benchmarks. One reason is that the cost of creating tasks and
managing d-e-ques in AdaptiveTC is much less than that of manag-
ing nested functions in Tascell; the other reason is that AdaptiveTC
performs better dynamic load balancing than Tascell does(see sec-

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk

Cilk-SYNCHED

Tascell

AdaptiveTC

(a) Nqueen-array(16)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk

Cilk-SYNCHED

Tascell

AdaptiveTC

(b) Nqueen-compute(16)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk

Cilk-SYNCHED

Tascell

AdaptiveTC

(c) Strimko

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk

Cilk-SYNCHED

Tascell

AdaptiveTC

(d) Knight’s Tour (6*6)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk
Cilk-SYNCHED
Tascell
AdaptiveTC

(e) Sudoku (input_balance tree)

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk

Cilk-SYNCHED

Tascell

AdaptiveTC

(f) Pentomino (13)

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7 8
Sp

ee
du

p
Number of Threads

Cilk

Tascell

AdaptiveTC

(g) Fig(45)

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk

Tascell

AdaptiveTC

(h) Comp (60000)

Figure 4. Speedup comparisons. Fib and Comp don’t have taskpri-
vate variables, therefore the speedup in (g) and (h) are against Cilk
and Tascell only.

0
0.5

1
1.5

2
2.5

3
3.5

4

Sp
ee

du
p

Cilk Cilk_SYNCHED Tascell AdaptiveTC

Figure 5. Speedup with 8 threads, baseline is Cilk’s execution
time.

C Tascell Cilk Cilk SYN Adap
CHED tiveTC

Nqueen- 60.81 85.33 197.69 184.26 66.04
array(16) (1.4) (3.25) (3.03) (1.09)
Nqueen- 554.04 627.15 669.22 661.16 612.24
compute(16) (1.13) (1.21) (1.19) (1.11)
Strimko 262.97 423.24 839.03 813.01 315.55

(1.61) (3.19) (3.09) (1.2)
Knight’s Tour 1322.51 1713.54 3307.32 3038.8 1217.56
(6*6) (1.3) (2.5) (2.3) (0.92)
Sudoku 614.74 943.99 1717.09 1632.57 731.13
(balance tree) (1.54) (2.79) (2.66) (1.19)
Pentomino 8.74 11.64 16.73 14.83 9.176
(13) (1.33) (1.91) (1.7) (1.05)
Fib(45) 16.57 16.8 66.46 – 25.14

(1.01) (4.01) (1.52)
Comp(60000) 12.59 14.13 19.03 – 13.08

(1.12) (1.51) (1.04)

Table 2. Execution time in seconds (and relative time to sequential
C programs) with one thread.

tion 5.2). The performance improvement over Tascell is in the range
of 1.37x to 2.093x using 8 threads.

The only exception is fib. As shown in Figure 7.c, the cost
of managing nested functions in Tascell is only 1.4% of the total
execution time, while the cost of creating tasks and managing d-
e-ques in AdaptiveTC is 51.7%; Tascell is thus 1.24x faster than
AdaptiveTC. The main reason is that, in fib, there is almost no
actual computation workload in each function. Hence, it increases
the proportion of task creations and the d-e-que management cost
substantially.

5.2 Overhead breakdown
We could basically break down the overheads of the three systems,
AdaptiveTC, Cilk and Tascell as follows:

1. Overhead of AdaptiveTC = management of d-e-ques and task
creations + taskprivate variables + THE protocol + waiting of
child tasks to complete + task stealing overhead;

2. Overhead of Cilk = management of d-e-ques and task creations
+ workspace copying + THE protocol + task stealing overhead;

3. Overhead of Tascell = nested functions overhead + polling
overhead+ waiting of child tasks to complete;

The cost of managing d-e-ques and creating tasks, workspace
copying, taskprivate variables, and nested functions overhead could
be measured by using only one thread, and the other costs need to
be measured by running multiple threads.

From Table 2 and Figure 6, the overhead incurred in Adap-
tiveTC is lower than that in Cilk, and that is the main reason why
AdaptiveTC could achieve a higher performance than Cilk for most
benchmarks. However, in fib, the overhead in Tascell is much lower
than that in the other two, thus Tascell gets the best performance on
fib.

However, as shown in Figure 7, using Tascell, the waiting time
for child tasks to complete takes 16.73%, 20.84%, and 11.31%
of the total execution time in Nqueen-array, Nqueen-compute and
fib, respectively, using 8 threads. The busy time in Cilk and Adap-
tiveTC is about 99% of the total execution time. Thus Nqueen-
compute in AdaptiveTC is 1.485x faster than in Tascell, even
though the cost of managing d-e-ques and creating tasks in Adap-
tiveTC is almost the same as the cost of managing nested functions
in Tascell.

61.04% 27.99% 10.97%

46.2% 14.84%

size=1934719465;
depth=63;

10.97%22.6% 23.6% 27.99% 0% 0%

10.97% 0%17.74% 4.87% 23.6% 0% 11.15% 3.68% 27.99% 0%

27.99%

14.84%

10.97%

depth0

depth1

depth2

depth3

depth4

Figure 8. An unbalanced tree (input1)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8
Sp

ee
du

p
Number of Threads

Cilk

Cilk-SYNCHED

Tascell

AdaptiveTC

Cutoff-programmer

Cutoff-library

Figure 9. Speedup of Sodoku (input1)

5.3 The performance of unbalanced trees
5.3.1 The performance of AdaptiveTC and the cutoff

strategy
Figure 8 shows a part of an unbalanced tree. The tree has a total
of 1,934,719,465 nodes, and a depth of 63. The percentage on each
node shows the size of the sub-tree rooted on the node compared
to the entire tree. This unbalanced tree is dynamically generated by
one of the inputs to Sudoku.

We implemented two cutoff strategies. In one strategy (Cutoff-
programmer), the cutoff is assigned by the programmer, and in the
other (Cutoff-library) the cutoff is assigned by the runtime system.
The cut-off is �logN� in AdaptiveTC. In both Cutoff-programmer
and Cutoff-library, some threads are in starvation when the num-
bers of threads are larger than 4, as shown in Figure 9. In Cutoff-
library, the cost of workspace copying cannot be reduced as men-
tioned before. In comparison, AdaptiveTC gets a better speedup in
an unbalanced tree than the other two strategies.

5.3.2 The dynamic load balancing in Cilk, Tascell and
AdaptiveTC

The three systems use different tradeoff strategies between dy-
namic load balancing and system implementation overhead to get
a high performance. Cilk can suspend a waiting task (to avoid its
waiting time) and execute other ready tasks because it keeps each
task’s information in the d-e-que. Tascell cannot suspend a wait-
ing task and has to wait for all its child tasks to complete because
Tascell uses the execution stack to keep the task information. Adap-
tiveTC can suspend a waiting task to execute other ready tasks, ex-
cept the special task which it has to wait for all its child tasks to
complete.

Figure 10 shows the speedups of 4 unbalanced trees. In Figure
10(a), it uses the tree shown in Figure 8 and its reversed tree. In
Figures 10(b), 10(c) and 10(d), it uses three randomly generated
unbalance trees and their reversed trees.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Tascell Cilk Cilk-SYNCHED AdaptiveTC

working taskprivate variable deque/nested function

(a) The overhead of Nqueen-array(16)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Tascell Cilk Cilk-SYNCHED AdaptiveTC

working taskprivate variable deque/nested function

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Tascell Cilk AdaptiveTC

working deque/nested function

(b) The overhead of Nqueen-compute(16) (c) The overhead of Fib(45)

Figure 6. Breakdown of overheads with one thread. The overheads in AdaptiveTC are lower than Cilk for the three benchmarks and lower
than Tascell for Nqueens, but higher than Tascell for fib.

0%
20%
40%
60%
80%

100%

2 4 8

Number of Threads

working polling wait_children

0%
20%
40%
60%
80%

100%

2 4 8

Number of Threads

working polling wait_children

0%

20%

40%

60%

80%

100%

2 4 8

Number of Threads

working polling wait_children

(a) The overhead of Nqueen-array(16) (b) The overhead of Nqueen-compute(16) (c) The overhead of Fib(45)

Figure 7. Breakdown of overheads with multiple threads in Tascell.

Input Size(the
number of
nodes)

Leaf nodes Depth The percent numbers shows
size of the depth 1 sub-tree
comparing with the entire
tree. (%)

Tree1L 1961025791 1245356982 48 42.512, 25.362, 13.019,
4.936, 0.416, 11.771, 1.984

Tree1R 1961025791 1245356982 48 1.984, 11.771, 0.416, 4.936,
13.019, 25.362, 42.512

Tree2L 1961025791 1192225858 52 74.492, 20.791, 1.106,
2.732, 0.637, 0.049, 0.193

Tree2R 1961025791 1192225858 52 0.193, 0.049, 0.637, 2.732,
1.106, 20.791, 74.492

Tree3L 1961025791 1182058030 51 89.675, 6.891, 1.836, 0.819,
0.645, 0.026, 0.108

Tree3R 1961025791 1182058030 51 0.108, 0.026, 0.645, 0.819,
1.836, 6.891, 89.675

Table 3. Randomly generated unbalanced trees. The six trees have
the same size, but different shapes. Tree*L is a left-heavy tree.
Tree*R is reversed of Tree*L and is a right-heavy tree.

We use a random function of xi = (xi−1 ∗A+ C)modeM to
generate a fixed random sequence of numbers for a given x0 (the
initial seed). xi is localized in each node and is used to get the size
of each sub-tree. When the tree size and the initial seed are defined,
the same unbalanced tree can be generated in multiple executions.

We set the execution time of each node to the average time of
the task in the benchmarks shown in Figure 4. Table 3 presents the
details of the unbalanced search trees. Tree3 is the most unbalanced
one among these trees.

In the experimental results (Figures 10(b), 10(c), 10(d)), Cilk
shows the best dynamic load balancing among the three systems
because it gets almost the same speedup in all six trees. Figure 10

also shows Cilk achieves a slightly higher performance in right-
heavy trees than in left-heavy trees.

The performance of Tascell is impacted a lot by the shape of the
tree. It gets worse performance on right-heavy trees than on left-
heavy trees as the recursive call is a depth-first tree traversal. In
Tascell, a parallel-for loop construct is implemented by spawning
a half of the tasks for the requested threads. On a left-heavy tree,
the first thread can run many tasks before waiting for its child tasks
to complete. But on the right-heavy tree, the first thread could run
fewer tasks before having to wait for its child tasks to complete.
Therefore, it spends more time waiting on a right-heavy tree than
on a left-heavy tree. For example, Tascell with 8 threads spends
8.08% of the total execution time in waiting on Tree3L, but almost
51.99% on Tree3R.

AdaptiveTC performs better dynamic load balancing than Tas-
cell, but not always as good as Cilk. In Figures 10(a), 10(b) and
10(c), AdaptiveTC gets almost the same speedup on right-heavy
and left-heavy trees. But in Figure 10(d), AdaptiveTC with 4, 7
and 8 threads, it gets worse load balancing on left-heavy tree than
on right-heavy tree. AdaptiveTC with 4 threads in Tree3L spends
14.44% of total execution time waiting due to steal fails (i.e. it fails
to steal a task) and 0.56% in waiting for child tasks to complete.
About 2/3 of the steal fails are due to encountering an empty d-
e-que. Hence, in AdaptiveTC with 4, 7 and 8 threads in Tree3L,
the number of tasks generated is not sufficient to keep all threads
busy, and this leads to the runtime starvation. But in Tree3R with
4 threads, AdaptiveTC spends 0.95% of total execution time wait-
ing due to steal fail and 1.46% due to waiting for child tasks to
complete.

In the future, we will compare the number of steals in Cilk,
the number of steals in AdaptiveTC and the number of respond-

(a) Sodoku (input1/input2)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk-SYNCHED-input1

Cilk-SYNCHED-input2

Tascell-input1

Tascell-input2

AdaptiveTC-input1

AdaptiveTC-input2

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk-SYNCHED_Tree1L

Cilk-SYNCHED_Tree1R

Tascell_Tree1L

Tascell_Tree1R

AdaptiveTC_Tree1L

AdaptiveTC_Tree1R

(b) Random unbalanced tree1L /tree1R

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk-SYNCHED_Tree2L

Cilk-SYNCHED_Tree2R

Tascell_Tree2L

Tascell_Tree2R

AdaptiveTC_Tree2L

AdaptiveTC_Tree2R

(c) Random unbalanced tree2L /tree2R

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Sp
ee

du
p

Number of Threads

Cilk-SYNCHED_Tree3L

Cilk-SYNCHED_Tree3R

Tascell_Tree3L

Tascell_Tree3R

AdaptiveTC_Tree3L

AdaptiveTC_Tree3R

(d) Random unbalanced tree3L /tree3R

Figure 10. Speedup of unbalanced trees

ing requests in Tascell to analyze and evaluate the dynamic load
balancing.

6. Conclusions
In this paper, we proposed an adaptive task creation strategy, called
AdaptiveTC, to support work-stealing that could outperform Cilk
and Tascell in several aspects. AdaptiveTC could adaptively create
tasks to keep all threads busy most of the time, reduce the number
of tasks created, and control the tasks granularity. It also introduced
a new data attribute taskprivate for workspace variables that could
reduce the workspace copying overhead in many important appli-
cations such as backtracking search, branch-and-bound search and
game tree. As the result, it could reduce the overhead of manag-
ing the d-e-ques and creating tasks, the cost of workspace copying,
and the chances of d-e-que overflow. Further, by using an adaptive
task creation strategy, it improves load balancing on unbalanced
call trees, and it is applicable to applications with or without defini-
tive working set.

Acknowledgments
This research was supported in part by the National Basic Research
Program of China (2005CB321602), the National Natural Science
Foundation of China (60970024, 60633040), the National Science
and Technology Major Project of China (2009ZX01036-001-002),
the Innovation Research Group of NSFC (60921002), the U.S.
National Science Foundation under the grant CNS-0834599 and a
gift grant from Intel.

We would like to thank the reviewers for valuable comments
and suggestions. We would like to thank Professor Zhiyuan Li at
Purdue University for his many valuable suggestions and Tasuku
Hiraishi for providing the Tascell system. Finally, we would like to
thank Professor Vivek Sarkar for shepherding the paper.

References
[1] OpenMP Application Program Interface. Version 3.0, 2008.

[2] E. Ayguade, A. Duran, J. Hoeflinger, F. Massaioli, and X. Teruel. An
Experimental Evaluation of the New OpenMP Tasking Model. In
the 20th International Workshop on Languages and Compilers for
Parallel Computing, pages 63–77, 2007.

[3] Robert D. Blumofe and Charles E. Leiserson. Scheduling multi-
threaded computations by work stealing. Journal of the ACM, 46(5):
720C–748, 1999.

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an
efficient multithreaded runtime system. In the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
PPoPP, pages 207–216, 1995.

[5] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun,
and Vivek Sarkar. X10: an object-oriented approach to non-
uniform cluster computing. In the Twentieth Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA, pages 519–538, 2005.

[6] David Chase and Yossi Lev. Dynamic circular work-stealing d-e-
que. In the seventeenth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA, pages 21C–28, 2005.

[7] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios
Liaskovitis, Anastassia Ailamaki, Guy E. Blelloch, Babak Falsofi,
Limor Fix, Nikos Hardavellas, Tod C. Mowry, and Chris Wilkerson.
Scheduling Threads for Constructive Cache Sharing on CMPs. In
the nineteenth annual ACM symposium on Parallel algorithms and
architectures, SPAA, pages 105–115, 2007.

[8] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorthy, Doug Lea,
Vijay Saraswat, and Tong Wen. Solving large, irregular graph

problems using adaptive work-stealing. In the 2008 37th International
Conference on Parallel Processing, pages 536–545, 2008.

[9] Alejandro Duran, Julita Corbaln, and Eduard Ayguad. Evaluation
of Openmp Task Scheduling Strategies. In the 4th International
Workshop on OpenMP, IWOMP, pages 100–110, 2008.

[10] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the cilk-5 multithreaded language. In the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, pages 212C–223, 1998.

[11] Supercomputing Technologies Group. Cilk 5.4.6 Reference Manual.
Massachusetts Institute of Technology, Laboratory for Computer
Science, Cambridge, Massachusetts, USA.

[12] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw: a
scalable locality-aware adaptive work-stealing scheduler. In the 24th
IEEE International Parallel and Distributed Processing Symposium,
IPDPS, 2010. (To appear).

[13] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa.
Backtracking-based Load Balancing. In the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
PPoPP, pages 55–64, 2009.

[14] Hans Wolfgang Loidl, Kevin Hammond, Hans Wolfgang, and
Loidl Kevin Hammond. On the Granularity of Divide-and-Conquer
Parallelism. In Glasgow Workshop on Functional Programming,
1995.

[15] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat.
Idempotent Work Stealing. In the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP, pages
45–54, 2009.

[16] Eric Mohr, David A. Kranz, and Jr Robert H. Halstead. Lazy
task creation: A technique for increasing the granularity of parallel
programs. IEEE Transactions on Parallel and Distributed Systems, 2
(3):264C–280, 1991.

A. An AdaptiveTC program for Sudoku

typedef struct {
unsigned char board[9][9]; // the chess board
unsigned char placed_block[9][9]; // whether a piece is placed
unsigned char placed_row[9][9];
unsigned char placed_col[9][9];
} Status_t;

cilk int search(int next_row, int next_col, Status_t *st)
 taskprivate: (*st) (sizeof(Status_t));

{
 int sn = 0; // the number of solutions

// find the first free row and col.
 if(!find_free_cell(next_row, next_col, &free_row, &free_col)){
 sn++; return sn; // a solution found
 }

 for(x = 1; x <= 9; x++){ // iterate through all numbers
if(conflict(st, free_row, free_col, x)) // check whether conflict

continue;
 set(st, free_row, free_col, x); // set the board and placed arrays
sn += spawn search(free_row, free_col+1, st);
undo(st, free_row, free_col, x); // undo the board and placed arrays

 }
sync;

 return sn;
}

An AdaptiveTC program for Sudoku

B. A fast version of a Sudoku task in AdaptiveTC

typedef struct {
unsigned char board[9][9]; // the chess board
unsigned char placed_block[9][9]; // whether a piece is placed
unsigned char placed_row[9][9];
unsigned char placed_col[9][9];
} Status_t;

int search(CilkWorkerState*const _cilk_ws, int _adpTC_dp,
int next_row, int next_col, Status_t *st){

 search_info *f; // task_infor pointer
f = alloc(sizeof(*f)); // allocate task_infor

 f->sig = search_sig; // initialize task_infor
// find the first free row and col.

 if(!find_free_cell(next_row, next_col, &free_row, &free_col)){
 sn++; // a solution found

free(f); // free task_info
 return sn;
 }
 f->sn = sn;
 for(x = 1; x <= 9; x++){ // iterate through all numbers

if(conflict(st, free_row, free_col, x)) // check whether conflict
continue;

 set(st, free_row, free_col, x); // set the board and placed arrays
 if(_adpTC_dp < cut-off){

 tmp_st = Cilk_alloca(sizeof(Status_t)); // alloca a new space
 memcpy(tmp_st, st, sizeof(Status_t)); // copy parent status
 f->entry = 1; // save PC
 f->st = st; // save live vars
 f->mt = mt; f->depth = 0; f->x = x; f->sn = sn;
 f->free_row = free_row; f->free_col = free_col;
 *T = f; // store task_infor pointer

 push(); // push task_infor into deque
 sn += search(_cilk_ws, _adpTC_dp+1, free_row,

free_col+1, tmp_st);
 if(pop(sn) == FAILURE) // check task_info
 return 0; // child task stolen
 }else{

sn += search_check(_cilk_ws, free_row, free_col+1, st);
 }

 undo(st, free_row, free_col, x); // undo board and placed arrays
 }

 free(f);
 return sn;
}

A fast version of a Sudoku task in AdaptiveTC

C. A check version of a Sudoku task in
AdaptiveTC

typedef struct {
unsigned char board[9][9]; // the chess board
unsigned char placed_block[9][9]; // pieces whether placed
unsigned char placed_row[9][9];
unsigned char placed_col[9][9];
} Status_t;

int search_check(CilkWorkerState*const _cilk_ws, int next_row,
int next_col, Status_t *st){

// find the first free row and col.
 if(!find_free_cell(next_row, next_col, &free_row, &free_col)){
 sn++; // a solution found
 return sn;
 }

{ search_info *f = NULL; // task_infor pointer
 int _adpTC_stolen = 0;
 int _adpTC_need_task = _cilk_ws->need_task;
 for(x = 1; x <= 9; x++){ // iterate through all numbers

if(conflict(st, free_row, free_col, x)) // check whether conflict
continue;

 set(st, free_row, free_col, x); // set the board and placed arrays
 if(!_adpTC_need_task){

 sn += search_check(_cilk_ws, free_row, free_col+1, st);
 }else{
 if(!f){

 f = alloc(sizeof(*f)); // allocate task_infor
 f->sig = search_sig; // initialize task_infor
 f->status = SPECIAL_TASK;
 f->sn = sn;
 }

 tmp_st = Cilk_alloca(sizeof(Status_t)); // alloca a new space
 memcpy(tmp_st, st, sizeof(Status_t)); // copy the parent status

 f->entry = 1; // save PC
 f->st = st; // save live vars
 f->depth = 0; f->x = x;
 f->free_row = free_row; f->free_col = free_col;
 *T = f; // store task_infor pointer

 push(); // push task_infor into d-e-que
 sn += search_2(_cilk_ws, 0, free_row, free_col+1, tmp_st);

 if(pop_specialtask() == FAILURE) // pop and check special task_info
 _adpTC_stolen = 1; // child task stolen

}
 undo(st, free_row, free_col, x); // undo the board and placed arrays
 }

 if(_adpTC_stolen){
 f->sn += sn;

 sync_specialtask(); // wait children tasks
 sn = f->sn; // update the result
 }
 if(f) free(f);
 return sn;
 }
}

A check version of a Sudoku task in AdaptiveTC

View publication stats

https://www.researchgate.net/publication/220799098

