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Abstract—Current programming models and compiler tech-
nologies for multi-core processors do not exploit well the per-
formance benefits obtainable by applying algorithm-specific, i.e.,
semantic-specific optimizations to a particular application. In this
work, we propose a pattern-making methodology that allows
algorithm-specific optimizations to be encapsulated into “opti-
mization patterns” that are expressed in terms of pre-processor
directives so that simple annotations can result in significant
performance improvements. To validate this new methodology, a
framework, named EPOD, is developed to map such directives
to the underlying optimization schemes.

We have identified and implemented a number of opti-
mization patterns for three representative computer platforms.
Our experimental results show that a pattern-guided compiler
can outperform the state-of-the-art compilers and even achieve
performance as competitive as hand-tuned code. Thus, such a
pattern-making methodology represents an encouraging direction
for domain experts’ experience and knowledge to be integrated
into general-purpose compilers.

I. INTRODUCTION

As the microprocessor industry evolves towards multi-

core architectures, the challenge in utilizing the tremendous

computing power and obtaining acceptable performance will

grow. Researchers have been addressing it along two directions

(among others): new programming models [1], [2], [3] and

new compiler optimizations. However, existing programming

models are not sophisticated enough to guide algorithm-

specific compiler optimizations, which are known to deliver

high performance due to domain experts’ tuning experience on

modern processors [4], [5], [6]. On the other hand, such opti-

mization opportunities are beyond the capability of traditional

general-purpose compilers. Meanwhile, compiler researchers

are making great efforts towards finding profitable optimiza-

tions, together with their parameters, applied in a suitable

phrase order. Examples include iterative compilation [7], [8],

collective optimization integrated with machine learning [9],

[10], [11], interactive compilation [11], [12], [13].

Motivated by analyzing the impact of high-level

algorithm-specific optimizations on performance, we

propose a pattern-making methodology, EPOD (Extendable

Pattern-Oriented Optimization Directives), for generating

high-performance code. In EPOD, algorithm-specific

optimizations are encapsulated into optimization patterns

that can be reused in commonly occurring scenarios, much

like how design patterns in software engineering provide

reusable solutions to commonly occurring problems. In a

pattern-guided compiler framework, programmers annotate

a program by using optimization patterns in terms of pre-

processor directives so that their domain knowledge can be

exploited. To make EPOD extendable, optimization patterns

are implemented in terms of optimization pools (with relaxed

phase ordering) so that new patterns can be introduced via

the OPI (Optimization Programming Interface) provided.
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Fig. 1: Performance gaps for GEMM and SYMM between

icc and ATLAS. EPOD (dense-mm) represents the perfor-

mance obtained by EPOD using the dense-mm pattern.

As a proof of concept, we have developed a prototyp-

ing framework, also referred to as EPOD, on top of the

Open64 infrastructure. We have identified and implemented

a number of patterns (stencil, relaxed stencil, dense matrix-

multiplication, dynamically allocated multi-dimensional arrays

and compressed arrays) for three representative platforms

(x86SMP, NVIDIA GPU and Godson-T [14]). Our experimen-

tal results show that a compiler guided by some simple pattern-

oriented directives can outperform the state-of-the-art com-

pilers and even achieve performance as competitive as hand-

tuned code. Such a pattern-making methodology represents

an encouraging direction for domain experts’ experience and

knowledge to be integrated into general-purpose compilers.

In summary, the main contributions of this work include:

• a pattern-making optimization methodology, which com-

plements existing programming models and compiler

technologies (Sections II and III);

• an optimization programming interface to facilitate ex-

tendability with new optimization patterns (Section III);

• an implementation of EPOD to prove the feasibility of

the new methodology (Section IV); and

• an experimental evaluation of several high-level patterns

to show the benefits of the new methodology (Section V).



SYMM Source Code:
Li: for (i = 0; i < M; i++)
    Lj: for (j = 0; j < N; j++)
    {
       Lk: for (k = 0; k < i; k++)
            {

  C[i][j] += A[i][k] * B[k][j];
                C[k][j] += A[i][k] * B[i][j];
             }
       Ld: C[i][j] += A[i][i] * B[i][j]; //diagonal
    }

x

x

i

k

k

j

i

k

k

jj

B

B

A

A

x

ii

kk

kk

jj

BA

x

ii

kk

kk

jj

B

A1

A2

A2

A2

A3 A4 A4 A4

kkk

jjj

iii

kkk

a11  a12  a13  a14

a21  a22  a23  a24

a31  a32  a33  a34

a41  a42  a43  a44

A

a11  a12  a21  a22

a13  a14  a23  a24

a31  a32  a41  a42

a33  a34  a43  a44

b11  b12  b13  b14

b21  b22  b23  b24

b31  b32  b33  b34

b41  b42  b43  b44

B

b11  b21  b12  b22

b31  b41  b32  b42

b13  b23  b14  b24

b33  b43  b34  b44

x

thread partition: Apply strip-mining to 
loop j and permute to get the index order j, i, jj, k
and distribute the outermost loop j across threads.

loop tiling: Tile loops i and k, to improve 
L2 cache locality. The index order is now j, i, k, ii, 
jj, kk.

loop fission: Split the loop nest into the 

three operating on the real area (A1, ,  A2, ),

shadow area (A3, , A4, ), and the diagonal.

loop peeling :  Peel the triangular area 
from the block of rectangular ones in each trian-
gular loop nest, i.e., A1 from A2's and A3 from A4's
in the left figure.

loop tiling: Apply loop tiling to triangular 
areas, A1 and A3. Apply loop tiling to rectangular 
areas operated by the three innermost loops ii, jj 
and kk. The index order is now j, i, k, ii, jj, kk, iii, 
jjj, kkk

data layout re-organiza-tion: Organize 
the two matrices to be multiplied using the block-
major format [15] in row and column order, 
respectively, to improve L1 cache locality.

register tiling 
vectorization 
loop unroll

Apply the above three steps to the loop nests of iii, 
jjj, kkk (omitted here).
The final index order is j,i,k, ii,jj,kk, iii,jjj,kkk
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Fig. 2: The optimization sequence for SYMM (encapsulated into the dense-mm pattern) in EPOD.

II. MOTIVATION

Our work is largely motivated by the desire to close the

performance gap between compiler-generated and hand-tuned

code. Below we analyze the causes behind and argue for the

necessity of infusing algorithmic knowledge into compilers.

A. Compiler-Generated v.s. Hand-Tuned Code

Although there is a substantial body of work on restruc-

turing compilers, it is fair to say that even for a simple

kernel, most current compilers do not generate code that can

compete with hand-tuned code. We take two kernels from

BLAS to examine the large performance gaps that we are

facing. Figure 1 compares the performance results of two

kernels selected from BLAS, matrix multiplication (GEMM)

and symmetric matrix multiplication (SYMM), achieved by

icc and ATLAS on a system with 2*Quad-core Intel Xeon

processors. Even when -fast is turned on in icc, which

enables a full set of compiler optimizations, such as loop

optimizations, for aggressively improving performance, the

performance results achieved by icc are still unsatisfying,



especially for SYMM.

B. Narrowing the Performance Gap

ATLAS [15] is implemented with the original source code

rewritten by hand. For example, SYMM is performed using

recursion rather than looping. Is it possible for the compiler to

significantly narrow (or close) the performance gap by starting

from the original BLAS loop nests, if a good optimization

sequence or pattern can be discovered?

Figure 2 explains the optimization sequence, which is en-

capsulated into a pattern, named dense-mm, that we applied

to SYMM. As A is a symmetric matrix, only its lower-left

triangular area is stored in memory. Thus, the access of A can

be divided into a real area and a shadow area. We applied

loop fission to achieve the division as shown in In Figure 2:

A1’ and A2’s are located in the real area while A3’ and A4’s

in the shadow. Loop tiling [16] was also applied to the two

areas. In this paper, tiling or strip-mining a loop with its loop

variable x (xx) produces two loops, where the outer loop x

(xx) enumerates the tiles (strips) and the inner loop xx (xxx)

enumerates the iterations within a tile (strip). Figure 3 shows

the source code generated with dense-mm being applied to

SYMM (with the effects of Steps 6 – 9 omitted).

The optimization sequence shown in Figure 2 is also ap-

plicable to GEMM, with Steps 3 and 4 ignored. Thus, we

encapsulate this sequence into a specific pattern, dense-mm,

with a parameter to specify whether it is for SYMM or

GEMM. Based on the optimization sequence, a compiler can

significantly narrow the performance gap with ALTAS for both

kernels as shown by the “EPOD (dense-mm)” bars in Figure 1.

But what are the reasons that prevent the state-of-the-art

compilers from discovering such optimization opportunities?

C. Accounting for Compiler’s Performance Loss

Yotov et al [17] previously also analyzed the performance

gap and found that compilers can build an analytical model

to determine ATLAS-like parameters, but they omitted some

performance-critical optimizations, such as data layout re-

organizations. We take a step further along this direction by

addressing two main obstacles that prevent compilers from

discovering dense-mm-like optimization sequences:

• General-purpose compilers can miss some application-

specific optimization opportunities. For GEMM,

dense-mm consists of applying a data-layout

optimization to change the two matrices to be multiplied

into the block-major format [15] in order to improve

L1 cache locality. Examining the icc-generated code,

we find that optimizations such as loop tiling, unrolling

and vectorization are applied, but the above-mentioned

data-layout transformation is not as it is beyond the

compiler’s ability to perform (as pointed out in [17]).

• The fixed workflow in existing compilers prevents them

from discovering arbitrarily long sequences of composed

transformations [18]. For SYMM, dense-mm consists

of applying loop fission and peeling after tiling, which

open up the opportunities for later optimizations to be

#pragma omp parallel for private(i, j, k, ii, jj, kk, iii, jjj, kkk)
for (j = 0; j < ThreadNum; j++)
{
    for (i = 0; i < M / L2TILE; i++)
    {
        //Computing A2 areas in Figure 2.
        for (k = 0; k < i; k++)

for (ii = 0; ii < L2TILE / NB; ii++)
    for (jj = 0; jj < (N / ThreadNum) / NB; jj++)
        for (kk = 0; kk < L2TILE / NB; kk++)

for (iii = 0; iii < NB; iii++)
    for (jjj = 0; jjj < NB; jjj++)
        for (kkk = 0; kkk < NB; kkk++)
        {

int idxi = i * L2TILE + ii * NB + iii;
int idxj = j * (N / ThreadNum) + jj * NB + jjj;
int idxk = k * L2TILE + kk * NB + kkk;
C[idxi][idxj] += A[idxi][idxk] * B[idxk][idxj];

        }
        //Computing A1 areas in Figure 2.
        k = i;
        for (ii = 0; ii < L2TILE / NB; ii++)

for (jj = 0; jj < (N / ThreadNum) / NB; jj++)
    for (kk = 0; kk <= ii; kk++)
        for (iii = 0; iii < NB; iii++)

for (jjj = 0; jjj < NB; jjj++)

    for (kkk = 0; kkk < min(NB, (ii  kk) * NB+ iii); kkk++)

    {
        int idxi = i * L2TILE + ii * NB+ iii;
        int idxj = j * (N / ThreadNum) + jj * NB+ jjj;
        int idxk = k * L2TILE + kk * NB+ kkk;
        C[idxi][idxj] += A[idxi][idxk] * B[idxk][idxj];
    }

    }
    for (i  = 0; i < M / L2TILE; i++)
    {
        //Computing A3 areas in Figure 2.

        //Computing A4 areas in Figure 2.

    }
    //Computing diagonal

}

Fig. 3: Transformed source code for SYMM (L2TILE and NB

are the tile sizes found in Steps 2 and 5 in Figure 2).

applied. Such composition is specific for the symmetric

problem and triangular iteration spaces and difficult for

compilers to generate automatically from general models,

as discussed earlier by Girbal et al in [18].

In summary, the current compiler technology can be en-

hanced to narrow the performance gap with hand-tuned code

by exploiting algorithm-specific optimizations and by perform-

ing optimizations in a more flexible framework.

III. THE EPOD COMPILER FRAMEWORK

In our pattern-making methodology, compiler developers

summarize domain experts’ tuning experience into optimiza-

tion patterns in the form of pattern-oriented directives and

programmers will annotate a program using these directives.

Our EPOD framework has two interfaces. One consists of

pattern-oriented directives, called EPOD pragmas, provided

for programmers to specify high-level optimization patterns

in source programs. The other consists of low-level scripts,

called EPOD scripts, provided for compiler developers to

define the optimization scheme for a specific pragma. In our

prototype, we have implemented the underlying EPOD scripts



ofunction dense-mm-single@x86SMP:
parameter input label: Li, Lj, Lk
parameter input var: A, B
tuned parameter: L2TILE(80:400:+80), 
        NB(80), BI(2), BJ(5), BK
{
   Ljj = stripmining(Lj, num_of_cores);
   loop_permute(Lj, Li);
   distribute_smp_thread(Lj);
   (Lii, Lkk) = loop_tiling(Li, Lk, L2TILE);
   if (A.Symmetric || B.Symmetric)
   {

 //Processing symmetric matrix

   }
   (Liii, Ljjj, Lkkk) = 

loop_tiling(Lii, Ljj, Lkk, NB, NB, NB);
   data_blocking(B, pB, C2BLK, N, L2TILE, Lk);
   data_blocking(A, pA, R2BLK, L2TILE, NB, Li);
   register_tiling(Liii, Ljjj, Lkkk, BI, BJ, BK);
   vectorization(Lkkk);
   fully_unroll(Lkkk);
}
//The final index order is 

(c) The EPOD script for dense-mm@x86SMP

S-Form
 (!A.Symmetric && !B.Symmetric):
Li: for (i = 0; i < M; i++)
   Lj: for (j = 0; j < N; j++)
      Lk: for (k = 0; k < K; k++)
        C[i][j] += A[i][k] * B[k][j];

S-Form
 (A.Symmetric && !B.Symmetric):

(b) Labeled standard form

File sgemm.c:

#pragma EPOD dense-mm single

for (j = 0; j < N; j++)
   for (i = 0; i < M; i++)
      for (k = 0; k < K; k++)
         C[i][j] += A[i][k] * B[k][j];
#pragma EPOD end

...

(a) The dense-mm pattern

Fig. 4: The EPOD pragma and script for the dense-mm

pattern for matrix-multiplication on X86 SMP.

for a number of EPOD pragmas. New pragmas can be easily

added by defining the underlying EPOD scrips.

EPOD is a source-to-source translator, which is not tied

to any specific programming language. Our prototype takes a

sequential C/Fortran program with EPOD pragmas as input,

applies the optimizations defined in the EPOD scripts to the

specified code regions, and generates as output the new source

code, which is then fed to a traditional compiler. In addition, a

pattern may perform either sequential or parallel optimizations

or both. For example, some pragmas imply parallelization-

oriented optimizations and the corresponding generated codes

may contain OpenMP directives. Some other pragmas are

restricted to sequential optimizations and the corresponding

generated codes will still be sequential.

Figure 4 gives the EPOD pragma and its corresponding

script for the dense-mm pattern (with the part applicable

when one of the two matrices is symmetric omitted). This is

the very pattern that enables EPOD to achieve nearly the same

hand-tuned performance represented in Figure 1. Note that

performance tuning for matrix multiplication is mature. We

have taken it only as an example to illustrate our methodology.

This example shows that a labeled standard form is used to

connect a pragma code region and its script. This ensures that

the underlying optimization is not tied to any data structure or

implementation, as discussed in Section III-A2.

A. The EPOD Translator

Figure 5 illustrates the EPOD translator, which is imple-

mented on top of the Open64 infrastructure. There are two

optimization pools in our prototype. The polyhedral trans-

formation pool, which is implemented based on URUK [18],

consists of a number of loop transformations performed in

the polyhedral representation (IR). The traditional optimiza-

tion pool, which is performed on Open64’ compiler internal

representation (IR), is implemented based on Open64. The

Fig. 5: Structure of the EPOD translator.

WRaP-IT and URGenT components introduced in [18] are

used for the indicated IR conversions.

As shown in Figure 5, the source code is first normalized

and labeled by the pre-processor and then translated into the

“compiler IR”, which is afterwards converted into the polyhe-

dral IR by WRaP-IT. A URUK script is generated from a given

EPOD script and the specified loop transformations in the

polyhedral transformation pool are applied to the polyhedral

IR. Then URGenT converts the transformed polyhedral IR

back into the compiler IR, annotated with the optimizations

specified in the EPOD script. Based on these annotations, the

requested components in the traditional optimization pool are

invoked in the order prescribed in the EPOD script. Finally,

the new compiler IR is translated back to the C source code

by using the whirl2c routine in Open64.

1) Retargetability: Our framework itself is architecture-

independent although some individual optimizations are

platform-specific. Optimizations are categorized by target plat-

forms to facilitate code maintenance. All platform-independent

optimizations are shared across different platforms.

Our current implementation of EPOD framework supports

x86 SMP, NVIDIA GPUs and Godson-T platforms, with the

target specified with the command as follows:

EPOD --arch=x86SMP/nGPU/GodsonT input.c

2) The EPOD Pre-processor: The pre-processor is the con-

nection between a pragma’ed program and its corresponding

EPOD scripts. As shown in Figure 4, a pragma has a set of

labeled standard forms determined by its its parameters rather

than the target architecture. The underlying EPOD scripts are

written in terms of labeled standard forms only.

The pre-processor has the following three functionalities:

• First, the pre-processor checks that a pragma’ed code

region satisfies all conditions for the pattern to be applied.

• Second, the pre-processor normalizes every loop nest and

labels every pragma’ed code region. Take matrix multipli-

cation as an example. The pre-processor normalizes the



given loop nest from the jik form given in Figure 4(a)

to the standard ijk form given in Figure 4(b).

• Third, the pre-processor analyzes the data access patterns

in a pragma’ed code region and exposes the parameters

to be passed to the corresponding EPOD script, such as

A and B in matrix multiplication. Afterwards, the script

analyzer processes the parameters passed and creates

instantiated scripts for the input program.

3) Correctness Assurance: As discussed above, the pre-

processor ensures that every pattern directive specified by the

programmer can be legally applied to the underlying code

region using pattern matching.

Our EPOD translator guarantees the legality of every trans-

formation applied. For a loop transformation performed on the

polyhedral IR, its correctness is assured by PolyDeps [19].

For a traditional transformation, its correctness is assured by

compiler analysis based on syntax-IR.

Some patterns allow data dependences to be relaxed for

improved performance, such as asynchronous stencil compu-

tation [20], [6]. To exploit such opportunities, some optimiza-

tions do not strictly enforce data dependences. In this case, a

dependence violation warning is issued to the user.

4) Parameter Tuning: There are some optimization pa-

rameters that need to be tuned, such as loop tile sizes. The

programmers can guide the tuning process by specifying, for

example, the value ranges for tunable parameters. As shown

in Figure 4, the five tunable parameters can be classified

into three categories. For fixed parameters, such as NB, BI

and BJ, the programmers can supply fixed values without

undergoing the tuning process. For semi-fixed parameters,

such as L2TILE, the programmers can specify the value range

and stride to be used. For example, L2TILE is tuned from

80 to 400 with a constant stride of 80. For free parameters,

such as BK, the programmers do not specify any tuning rules,

which will be determined by the corresponding optimization

component using such techniques as those presented in [21].

A parameter is tuned with some given representative inputs,

resulting in fast tuning times. For example, the EPOD script

in Figure 4(c) takes less than two minutes to tune. Specializing

code for different inputs is left as future work.

B. Optimization Programming Interface

Thread Loop Memory/Stmt

distribute cuda block
distribute cuda thread
distribute smp thread
thread binding
...

stripmining
loop permute
loop interchange
loop unroll
split tiling
loop tiling
loop skewing
loop fission
loop fusion
loop peeling
...

data replace

SM alloc3D cuda
GM alloc3D cuda

data map cuda

rectangular map cuda

stencil xymap cuda
rotate buffer2D cuda

vectorization

new label
attach label
...

TABLE I: Optimizations invokable in the EPOD scripts using

EPOD’s OPI (Optimization Programming Interface).

Our OPI (Optimization Programming Interface) is an inter-

face that provides the optimization components that can be

invoked in an EPOD script. This is illustrated earlier for the

dense-mm pattern in Figure 4(c). Table I shows the OPI for

some optimizations in the two optimization pools shown in

Figure 5 classified into three categories by functionality. (All

those in italic belong to the traditional optimization pool and

the remaining ones belong to the polyhedral pool.)

We will discuss some pattern-oriented directives that we

have implemented in Section IV. New patterns can be added

by implementing the underlying EPOD scripts via the OPI.

In addition, some optimizations can be encapsulated into

packages, which can be invoked as functions/procedures.

IV. PRAGMA IMPLEMENTATION

A pragma directive is specified with the following syntax:

#pragma EPOD directive-name [clause

[,clause]...]

...(the code region enclosed by the pragma)

#pragma EPOD end

which conforms to the conventions of the C and C++ standards

for language directives. Each directive has its corresponding

clauses specifying its associated parameters.

In our prototype, we have implemented the following di-

rectives: stencil, relaxed-stencil, dense-mm,

dmdarray and compress-array.

In this section, we examine two pragmas (stencil and

relaxed-stencil), to emphasize that

• these optimizations cannot be exploited automatically by

existing general-purpose compilers; and

• each individual transformation is tractable to implement.

The other pragmas are omitted due to space limitations but

will be discussed briefly in Section V.

A. Pragma: stencil

Stencil computation often arises from iterative finite-

difference techniques sweeping over a spatial grid. Applica-

tions which use stencil computations include PDE solvers,

image processing and geometric modeling. At each point, a

nearest-neighbor computation, called a stencil, is performed:

the point is updated with weighted contributions from a subset

of points nearby in both time and space [22].

There are two types of stencil computations: in-place, such

as Gauss-Seidel and SOR, and out-of-place, such as Jacobi

[23]. Many optimizations exist, including e.g., exploitation of

data reuse across multiple time steps (out-of-place [24] and in-

place [25]) and architecture-specific techniques in one single

time step (out-of-place [22] and in-place [26]).

Our discussions focus on the out-of-place single timestep

stencil. So by the stencil below, we mean this particular one.

1) Syntax: The stencil pragma is specified by:

#pragma EPOD stencil dim(d)

in-place/out-of-place [single-step]

[src-stride(s1,...,sd−1),tgt-stride(s1,...,sd−1)]

...(the code region controlled by the pragma)

#pragma EPOD end



B[z][y][x] = a[0]*(A[z][y][x-1]+A[z][y][x+1]+A[z][y-1][x]
+A[z][y+1][x]+A[z-1][y][x]+A[z+1][y][x]);

int idx = z*NN+y*N+x;
B[idx] = a[0]*(A[idx-1]+A[idx+1]+A[idx-N]+A[idx+N]

       +A[idx-NN]+A[idx+NN]);

B[z][y][x] = a[0]*A[z][y][x-1]+a[1]*A[z][y][x+1]+a[2]*A[z][y-1][x]
+a[3]*A[z][y+1][x]+a[4]*A[z-1][y][x]+a[5]*A[z+1][y][x];

B[z][y][x] = a[0]*(A[z][y][x-2]+A[z][y][x-1]+A[z][y][x+1]
+A[z][y][x+1]+A[z][y-2][x]+A[z][y-1][x]+A[z][y+1][x]
+A[z][y+2][x]+A[z-2][y][x]+A[z-1][y][x]+A[z+1][y][x]
+A[z+2][y][x]) + b;

A[t%2][z][y][x] = a[0]*(A[(t-1)%2][z][y][x-1]
+A[(t-1)%2][z][y][x+1]+A[(t-1)%2][z][y-1][x]
+A[(t-1)%2][z][y+1][x]+A[(t-1)%2][z-1][y][x]
+A[(t-1)%2][z+1][y][x]);

Fig. 6: Some variants of stencil computations.

S-Form(dim==3 && out-of-place && single-step):
Lz: for (z = 0; z < Z; z++)
   Ly: for (y = 0; y < Y; y++)
      Lx: for (x = 0; x < X; x++)
          if (z>=R && z<Z-R && y>=R && y<Y-R && x>=R && x<X-R)
            //f represents an affine function, b is a variable
            B[z][y][x] = f(A[z-R][y-R][x-R]...A[z+R][y+R][x+R], b);

Fig. 7: Labeled standard form of the stencil pragma (three

dimensions, single-step and out-of-place).

which includes two parameters specifying the problem dimen-

sion and type. Furthermore, the single-step clause can

be used to explicitly specify that only the optimizations inside

one timestep are applied. Another optional parameter is used

to describe the matrix stride when a one-dimensional array is

used as the data structure of the grid.

2) Pattern Verification and Normalization: Our objective is

to provide a unified pragma interface for programmers despite

the presence of stencil computations with a variety of different

computational characteristics. Figure 6 shows some variants

of the single-step out-of-place stencil (with loop control state-

ments omitted). All these and other variants are accepted due

to our design philosophy that a pattern definition is generalized

as much as possible inside the preprocessor. They are all

normalized to the labeled standard form in Figure 7.

We list the four major steps used to verify using pattern

matching whether a code region exhibits the stencil pattern

and to put it into the labeled standard form when it does:

• Step 1. Variables and Subscripts. The array subscripts

are extracted and put into the standard d-dimensional

form. If one-dimensional arrays are used, the parameters

specified by the src-stride and tgt-stride clauses are

used. Furthermore, only the subscripts of the lowest d

dimensions are checked, meaning that in the standard

form in Figure 7, the notation B can be an array element

 stencil-3d@nGPU:
: Lz, Ly, Lx

: A, B, R                    //R for radius
: BY, BX, TY(1), TX(1)

{
   if (out_of_place == true && single_step == true) 
   {
     (Lyy, Lxx) = loop_tiling(Ly, Lx, BY, BX);
     distribute_cuda_block(Ly, Lx);
     (Lyyy, Lxxx) = loop_tiling(Lyy, Lxx, TY, TX);
     distribute_cuda_thread(Lyy, Lxx);
     loop_permute(Lz, Lyyy);
     a = SM_alloc3D_cuda(2*R+1, BY+2*R, BX+2*R);
     xymap = stencil_xymap_cuda(BX, BY, TX, TY, NoTrans);
     data_map_cuda(&a[2*R], &A[0], xymap, Lxxx);
     rotate_buffer2D_cuda(a, EPODDesc, xymap, Lz);
     data_map_cuda(&a[2*R], &A[z+R], xymap, Lz);
   }
   ...
}

Fig. 8: Script for the stencil Pragma on NVIDIA GPU.

A[t%2] so that the program in Figure 6(e) is valid.

• Step 2. Loop Nests. The loop indices are extracted to

form d internal variables, the loop iterations are normal-

ized from highest to lowest dimension, and the loop lower

bounds are also normalized to start from zero.

• Step 3. Neighbourhood. The notion of neighborhood is

determined by a parameter, radius. In the case a stencil,

for example, if radius=1, the neighbors are the points

ranging from (z-1,y-1,x-1) to (z+1,y+1,x+1).

• Step 4. Computation Pattern. The pattern for a

point is determined as an affine function of its

neighbors. Some coefficients are limited to non-zeros,

e.g., (z,y,x-1), (z,y,x+1), (z,y-1,x),

(z,y+1,x), (z-1,y,x), and (z+1,y,x) when

radius=1 while others can be zero. In the case of

the 3D stencil, when the coefficients of these six points

are unified and the others are zero, we end up with the

6-point stencil in Figure 6(a). When all the coefficients

are non-zero, we have the 27-point stencil.

3) Pragma Implementation: In our prototype, we use a

EPOD script to build the optimization schemes for a pragma.

The underlying implementation of a pragma varies with

pragma parameters and target platforms. We have imple-

mented the stencil pragma on NVIDIA GPU, x86SMP and

Godson-T. We focus on NVIDIA GPU for the single-step

and out-of-place 3D stencil, based on the optimization

experience summarized in [4], including the critical steps of

problem decomposition for parallelization and the circular

queue for memory bandwidth optimization. The script imple-

mentation is shown in Figure 8 and is briefly explained below:

• loop tiling & distribute cuda block & distribute

cuda thread. Similar with the method presented by

Baskaran et al in [27], we also use loop tiling to generate

multi-level parallel tiled code and the two other optimiza-

tions to distribute the thread blocks and threads.

• loop permute. This step permutes the z loop out to

enlarge the thread granularity and reduces kernel launch

overhead. Therefore, each thread block iteratively com-



putes its xy-plane along the z dimension.

• SM alloc3D cuda. For a thread block, besides the tiles

of A, there are halo regions to be shared across all threads

[23]. Thus, all these data are allocated in shared memory.

• stencil xymap cuda. This prepares for later shared

memory optimizations. It creates a mapping between

thread and array indices and determines how to fetch data

from global memory to shared memory concurrently.

• data map cuda & rotate buffer2D cuda. These im-

plement the shared memory based circular queue. The

last parameter is the enclosed label used to specify the

scope of the data replacement: in the loop nest Lxxx, the

references of A[0] are replaced by a[2*R]. Meanwhile,

necessary synchronizations, __syncthreads(), are

also inserted appropriately into the loop nest.

B. Pragma: relaxed-stencil

This pragma is designed for a special case of iterative

numerical stencil algorithms like PDE solvers, which test for

convergence in each time step, thereby incurring high syn-

chronization cost and impeding locality exploitation. In [20],

[6], the performance benefits using asynchronous algorithms

with synchronization relaxation are demonstrated for shared

memory multi-cores and GPUs, respectively.

Such relaxation modifies an algorithm and violates its data

dependencies, which is obviously beyond the compiler’s ca-

pability. Furthermore, when the relaxation semantic is known

to the compiler, more complex optimization opportunities can

be exposed, such as loop tiling for locality together with some

coarse-grain parallelization [20].
1) Syntax: The relaxed-stencil pragma is:

#pragma EPOD relaxed-stencil dim(d)

in-place/out-of-place

[src-stride(s1,...,sd−1),tgt-stride(s1,...,sd−1)]

...(the code region controlled by the pragma)

#pragma EPOD convergence-test

...

#pragma EPOD end

...

#pragma EPOD end

which includes the parameters about dimension and stride

as in the stencil pragma. There is one more parameter

used to specify the code fragment for convergence test so that

our preprocessor would not touch this code fragment during

pattern matching. Note that convergence-test is valid

only when it is inside a relaxed-stencil scope.
2) Pattern Verification and Normalization: We consider

again the 3D stencil, whose pattern verification is similar

to that for the stencil pattern with two main differences:

multiple-timestep and convergence test.

• A three-dimensional loop nest for a spatial domain is

enclosed in a loop representing the temporal dimension.

• If out-of-place is specified, then the ping-pong

buffering technique is used, which swaps the source

and target buffers at each time step thereby efficiently

utilizing memory. If in-place is specified, the source

and target array should be identical.

• Convergence is tested in each time step, using the code

annotated by the programmer. Our pre-processor treats it

as a black-box and does not analyze its semantics.

3) Pragma Implementation: We have implemented

relaxed-stencil on x86SMP and NVIDIA GPUs based

on [20], [6]. Briefly, a given loop nest is split to create two

nests with the convergence test contained in one of the two.

For each nest, strip-mining is applied to the outermost loop

so that the time dimension is partitioned into chunks [20].

Loop skewing and tiling are then applied inside a chunk.

Then the time dimension in a chunk is permuted inside a tile

so that locality can be exploited across multiple time steps.

Finally, computations of all tiles are parallelized. Note that

the convergence test code is embedded in each chunk.

This scheme improves both locality and parallelism. As

some data dependences are violated, the compiler cannot

usually apply it without user intervention.

V. EVALUATION

A. Platforms and Benchmarks

We have conducted a series of experiments to evaluate

our pattern-oriented approach. Three platforms are chosen:

Intel Xeon as the x86SMP platform, NVIDIA GTX285 as

the NVIDIA GPU platform, and Godson-T as a homogeneous

many-core platform. The detailed configurations are:

• The Intel Xeon is configured to use two processors with

each being a quad-core Xeon 5410 (2.33GHz, 32KB L1

DCache, 32KB ICache and 6MB L2 cache).

• GTX285 consists of 30 SMs, each containing 8 SPs. Each

SM has 16384 registers and a 16KB local shared memory.

The peak performance is 709GFLOPS.

• Godson-T is a many-core prototype which has 64 homo-

geneous cores supporting 32-bit MIPS ISA. Each core has

a 32KB on-chip memory, working as a private L1 data

cache by default. All these on-chip memories can also

be configured as a globally accessed software-controlled

scratchpad memory (SPM), and the full-empty bit con-

trols the synchronization behavior of memory references

to the SPM. This bit tagged on a memory cell indicates

the presence of data at the memory location, with a 1 for

“full” and a 0 for “empty” [14].

Table II lists the five patterns implemented in our proto-

type and the benchmarks used for each pattern-architecture

combination. A blank entry for an architecture indicates that

the corresponding pattern is not useful. When evaluating

stencil, the benchmarks used on NVIDIA GPU are dif-

ferent from those on the other two platforms. This is because

the single-step stencil is implemented on NVIDIA GPU while

the multiple-step on the other two platforms on which low-

dimensional stencil problems are mostly beneficial.

As shown in Table II, we have used some numerical

kernels and real applications from different benchmarks (SPEC

CPU2000, NPB-3.3, MGMRES, BLAS and CUDA-SDK).

These programs are briefly discussed below:



❳
❳
❳
❳
❳
❳
❳❳

Pattern
Arch

x86SMP NVIDIA GPU Godson-T

stencil 1D-Jacobi
2D-Jacobi

CUDA-SDK:
-laplace
-3dfd
CPU2000:
-mgrid

1D-Jacobi
2D-Jacobi

relaxed-stencil 3D-Jacobi
3D-Gauss-Seidel
3D-SOR

3D-Jacobi
3D-Gauss-Seidel
3D-SOR

−

dense-mm BLAS:
-SGEMM
-SSYMM
-STRMM
CPU2000:
-wupwise

BLAS:
-SGEMM
-SSYMM
-STRMM

BLAS:
-SGEMM

dmdarray CPU2000:
-equake

− −

compress

ed-array

NPB-3.3:
-CG
MGMRES:
-ILU

− −

TABLE II: Benchmarks used for pattern-architecture pairs
(“−” means that the corresponding pattern is not useful).

• 1D-Jacobi and 2D-Jacobi are representative Jacobi ker-

nels to solve Laplace’s equation with fixed iteration steps.

• laplace from CUDA-SDK solves Laplace’s equation

on a regular 3D grid using the Jacobi method, and

3dfd from CUDA-SDK performs the 3D difference

computation.

• Jacobi, Gauss-Seidel (GS) and successive over-relaxation

(SOR) are well-known methods used to solve PDEs.

• SGEMM, SSYMM, STRMM are three routines chosen

from the BLAS library, which perform general, symmet-

ric and triangular matrix-multiplication, respectively.

• mgrid, equake, wupwise and CG are well-known

programs from SPEC CPU2000 and NPB-3.3.

• ILU from the MGMRES benchmark computes the incom-

plete LU factorization of a sparse matrix [28].

B. Methodology

We should emphasize that our objective is not to explore the

performance potentials for a specific application. Instead, we

would like to demonstrate the benefits of applying our pattern-

oriented approach in achieving better performance than exist-

ing general-purpose compilers and comparable performance

as hand-tuned code. So we adopt the following principles to

ensure that reliable comparisons are made:

• If well-tuned programs are available, we compare the

performance results obtained by EPOD with those from

such programs obtained by, e.g., ATLAS and Intel MKL

(x86SMP), CUDA-SDK and CUBLAS (NVIDIA GPU).

• Otherwise, we proceed as follows:

– If a pragma implies parallelization-

oriented optimizations, such as stencil,

relaxed-stencil or dense-mm, we compare

the EPOD performance against the performance

achieved in the available parallel codes, such as

OpenMP on x86SMP and pthread on Godson-

T, which are compiled with the state-of-the-art

compilers, i.e., icc on x86SMP and Open64 on

godson-T. For NVIDIA GPU, if no CUDA code

is available, we take the performance on the host

CPU, which is a system with 2.6GHz Intel Core2

E4700 with 2M L2 cache, for comparison.

– If a pragma focuses only on sequential optimizations,

such as dmdarray and compressed-array, we

compare with the state-of-the-art native compilers.

For each pattern-architecture pair, we present our experi-

mental results, explain how why a pattern is beneficial, and

discuss why it is beyond the capability of existing compilers.

C. Pragma: stencil

x86SMP. Figure 9 shows that EPOD achieves about 2x

speedup over the OpenMP code compiled by icc -openmp

-fast. The performance improvement comes from the

pragma implementation that exploits data reuse and paral-

lelism using the overlapped tiling described in [24].

The shape of overlapped tiling is performance-critical.

However, selecting such a tile shape is not easy for existing

compilers. In [24], how to automate this transformation is

addressed but not when to apply it, which is more important

for performance. Therefore, we provide such a pragma for the

programmers to make this decision.

NVIDIA GPU. Figure 10 depicts the execution time of

laplace and 3dfd, which shows that EPOD can achieve

performance as competitive as (or even better than) the hand-

tuned code in CUDA-SDK, for different stencil computations

and when the radius of 3dfd varies from 1 to 4.

Figure 11 gives the execution time for mgrid which

is pragma’ed as Figure 12. The EPOD execution time is

normalized to that on the host CPU, which is compiled by

ifort with the -fast option. It shows that only very little

programmer efforts are required to port a program from CPU

to NVIDIA GPUs and high performance is achieved.

The mgrid benchmark includes two stencil kernels, resid

and psinv, which are pragma’ed as shown in Figure 12.

All the other kernels are regular loops and distributed to

GPU using the method described in [27]. The pragma of

EPOD gpu begin specifies the scope inside which the arrays

are mapped to GPU’s global memory. Our EPOD translator

automatically generates cudaMemcpy required and directs

the memory references to the new GPU arrays. Note that

the implementation of the stencil pragma is described in

Section IV, which is beyond the ability of existing compilers.

Godson-T. Figure 16 shows the performance contribution

of EPOD, which is 4x speedup over the pthread API.

The improvement comes from the pragma implementation,

which starts from the split tiling introduced in [24] and then

exploits several architecture-specific optimizations, including

using SPM and fine-grain synchronization.

Just like the overlapped tiling on x86SMP, it is difficult for

compilers to select the tile shape automatically. We provide

a pragma for the programmers to make this decision. Fur-

thermore, as discussed in Section V-A, its on-chip memory

can be dynamically configured as cache or SPM. How to do
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Fig. 10: stencil on GPU.

so for a given application is beyond the scope of this paper.

We only provide an extra pragma clause [onchip-SPM] to

explicitly switch to the SPM mode throughout the pragma’ed

code region, which is used in our evaluation.

D. Pragma: relaxed-stencil

x86SMP. Figure 13 depicts the performance results when

eight cores are used, showing a 7x speedup over the OpenMP

version compiled by icc -openmp -fast. In addition,

better scalability is also observed in Figure 14. The EPOD and

OpenMP performance results are presented as the speedups

over the sequential code. For GS and SOR, the sequential code

cannot be parallelized. So the red-black code is used instead.

The performance is improved due to our underlying pragma

implementation described in Section IV, which improved

both locality and parallelism, so that significantly improved

performance compared with the synchronous parallel codes.

As discussed in Section IV, the implementation is also

beyond the ability of existing compilers.

NVIDIA GPU. Figure 15 compares the performance results

of EPOD on GPU with those on the host CPU, which shows

around 35x speedup is achieved. The underlying implementa-

tion is based on the work of [6]. In particular, we leveraged the

implementation of stencil and relaxed the synchronization

requirement, both of which are beyond the compiler’s ability.
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Fig. 11: mgrid on NVIDIA GPU (data transfer cost included).

PROGRAM mg3xdemo

   !$EPOD gpu begin
DO it = 1, nit, 1

      arg = nv
      arg0 = nr
      CALL mg3p(...)

   CALL resid(...)
   ENDDO
   !$EPOD end

...
SUBROUTINE psinv(...)

  !$EPOD stencil dim(3) single-step
  DO i3 = 2, n-1, 1
   DO i2 = 2, (-1)+n, 1
    DO i1 = 2, (-1)+n, 1
     u(i1,i2,i3) = u(i1,i2,i3)+c(0)*r(i1,i2,i3) + ...
    ENDDO

ENDDO
  ENDDO
  !$EPOD end
  ...

Fig. 12: Pragma’ed code region in mgrid.

E. dense-mm

The syntax for dense-mm is introduced in Section II. We

have also provided some parameters for data type, transposi-

tion mode, and matrix shape to be specified as follows:

#pragma EPOD dense-mm single/double/complex

[src-stride(ss),tgt-stride(st)]

[transpose(A/B)]...

[triangular/symmetric(A/B)]...

#pragma EPOD end

x86SMP. Figure 17 shows that a pattern-guided EPOD

compiler can achieve better performance than icc -fast

and comparable performance as well-tuned ATLAS and MKL

libraries. Furthermore, we have also pragma’ed wupwise

for evaluation. EPOD delivers 24.6% speedup over the

OpenMP version in SPEC OMP2001 compiled by ifort

with -openmp -fast options.

In Section II, we discussed why existing compilers cannot

achieve the same performance as hand-tuned code.

NVIDIA GPU. The performance results in Figure 18 show

that EPOD outperforms well-tuned CUBLAS 2.3 routines (up

to 2.8x speedup for SYMM). Our implementation on NVIDIA

GPU is based on [5]. In addition, we have also manually made

specific adjustments according to the parameters.

Godson-T. On Godson-T, the pragma results in a perfor-

mance of 124.3GFLOPS for GEMM, which is 97.1% of the

chip’s peak, while the performance of pthread API is only less

than 20GFLOPS. Our underlying implementation on Godson-

T is based on [14], and we mentioned earlier that we provide

an extra pragma clause [onchip-SPM] to explicitly switch to

the SPM mode throughout the pragma’ed code region.
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F. dmdarray

This pragma is provided for dynamically allocated multiple

dimensional arrays, which is not internally supported in C

and requires some programming to set it up. For example,

a dynamically allocated two-dimensional array is regarded as

an array of one-dimensional arrays. Thus, the elements can be

referred to by the familiar double bracket ([][]) notation.

However, multiple memory references are involved in ac-

cessing one element of a multi-dimensional array, resulting in

extra overhead. An alternative solution is to unwind it into a

one-dimensional array. This is efficient but not programmable,

and in addition, programmers prefer to use the familiar mul-

tiple subscripts of a multi-dimensional array.

We provide the dmdarray progma with the syntax:

#pragma EPOD dmdarray(A) dim(n) stride(S1,...,Sn)
...

#pragma EPOD end

The dmdarray A is required not to be referenced through

pointers. In our implementation, the array allocation and

element references are replaced by the one-dimensional form

inside the pragma’ed region, including functions invoked in-

side. So efficiency and programmability are both guaranteed.

Table III presents the performance results for equake,

showing more than 25% improvement when EPOD is used.

The load/store instruction counts are reduced due to the

elimination of indirect memory accesses.

This transformation is beyond compiler’s ability, because it
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changes the mode of memory allocation and reference, hence

violating the original semantics.

G. compressed-array

This pragma is provided for compressed arrays, especially

for index arrays used in linear systems, to reduce the memory

bandwidth consumption. Liu et al [29] present an adaptive

compression scheme which has been integrated into compilers

and can automatically transform a program into different

versions corresponding to different encoding methods. Mean-

while, they discussed that the scheme requires the underlying

precise pointer analysis to determine the compression scope

and guarantee no aliasing. However, it is flexible for pro-

grammers to express such compressible arrays so that more

aggressive optimization opportunities can be exposed.

We use the following syntax with a parameter specifying

the compressing mode (with its default being adaptive):

#pragma EPOD compressed-array(A)

[dac/ddac/sddac/adaptive]

...

#pragma EPOD end

Figure 19 shows the performance improvement of up to 3.3x

speedup on x86SMP due to the bandwidth pressure reduction.

VI. RELATED WORK

Many programming models and systems have been pro-

posed in an attempt to ease the programming burden on

modern processors, such as Cilk [2], TBB [3] and X10 [1].
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These models/systems aim at expressing general program

behaviors, with less focus on algorithm-specific optimization

opportunities. OpenMP provides a semantic-related directive,

reduction, boosting performance for reduction operations.

Lin et al [30] optimize DSP applications using some semantic-

oriented directives. Unlike these earlier attempts, this work

explores the use of extendable semantic-oriented directives in

a broader sense to improve program performance on general-

purpose and application-specific architectures.

In order to close the performance gap between the peak and

sustained performances of a program, auto-tuning has been

studied for many years, which was initially developed by some

library writers to support empirical optimizations. Well-known

library generators include ATLAS [15] (for BLAS), FFTW

[31], and SPIRAL [32] (for signal processing). These systems

perform a systematic search over a collection of automatically

generated code variants. The auto-tuning technology has also

been applied to domain-specific applications on multi/many-

core platforms, such as stencil computations [4].

Iterative compilation focuses on finding out profitable opti-

mizations tailored for different objectives such as execution

time and code size [33], [34], [35]. Iterative compilation

typically searches for the best optimization sequence from a

search space determined by optimization flags, optimization

parameters and phase orders. One main problem is its long

search time. As a result, there have been some research efforts

TABLE III: Performance results for equake on x86SMP.

Execution
Time(s)

Load
Instructions

Store
Instructions

no EPOD 27 3.2E+10 4.2E+10

with EPOD 20 2.5E+10 3.7E+10
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Fig. 19: compressed-array on x86SMP.

on reducing the search space [7], [8]. Another problem is the

lack of support for the active involvement of domain experts

during the iterative compilation process. To address this, re-

searchers are experimenting with collective optimization [10],

[9], [11] in the self-optimizing compiler framework, MILE-

POST GCC. The idea is to collect performance information

in a central database shared across different users and relies

on machine learning to compare semantic features and select

good optimization passes [11]. In contrast, this work helps

the programmer reuse optimization knowledge explicitly via

extendable semantic-oriented directives.

To provide the user more control about a compiler by going

beyond just a set of optimization flags, interactive compilation

is proposed that allows the user to invoke transformations di-

rectly, change their parameters, and even add plugins with new

transformations. One example is the Interactive Compilation

Interface (ICI) [11]. Meanwhile, the scripting languages have

also been used to facilitate compiler optimizations [36], [21],

[37], [18], [12], particularly to specific code regions. In this

paper, we have extended this script-based method to a more

general setting, with an OPI to support the EPOD approach.

Due to the benefits of understandability, debuggability and

decoupling from specific back-ends, source-to-source transla-

tion is typically used to map programmer annotations or lan-

guage constructs in existing languages, such as OpenMP and

Fortran’s DOALL statements. It is also used to translate legacy

code to use the next version of the underlying programming

language or an API that breaks backward compatibility, such

as in ROSE [13], C-to-CUDA translator [27], and many script-

controlled compilers [36], [21], [37], [18], [12].



VII. CONCLUSION AND FUTURE WORK

We proposed an EPOD methodology to encapsulate

algorithm-specific optimizations into patterns that can be

reused in commonly occurring scenarios. With EPOD, pro-

grammers can achieve high performance with simple annota-

tions in source programs so that the domain knowledge can be

leveraged by the EPOD translator. Furthermore, optimization

patterns are implemented in terms of optimization pools so

that new patterns can be introduced via the OPI provided.

Our experimental results show that a compiler guided by

some simple pattern-oriented directives can outperform the

state-of-the-art compilers and even achieve performance as

competitive as hand-tuned code. As a result, such a pattern-

making methodology seems to represent an encouraging di-

rection for domain experts’ experience and knowledge to be

integrated into general-purpose compilers.

In our experimental evaluation, each program comprises

one optimization pattern only. However, as more and more

patterns are discovered and integrated into the framework, one

program can involve more than one patterns. This is one of our

future work, and others consist of improving the readability of

EPOD-generated code, exploiting optimization issues across

different pragmas and specializing code for different inputs.
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