
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322972484

Lazygraph: lazy data coherency for replicas in distributed graph-parallel

computation

Conference Paper · February 2018

DOI: 10.1145/3178487.3178508

CITATIONS

10
READS

386

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Optimization on Resource Conflict View project

Lei Wang

Chinese Academy of Sciences

22 PUBLICATIONS 280 CITATIONS

SEE PROFILE

Chen Junhang

Chinese Academy of Sciences

2 PUBLICATIONS 19 CITATIONS

SEE PROFILE

Fang Lu

Chinese Academy of Sciences

16 PUBLICATIONS 141 CITATIONS

SEE PROFILE

Xiaobing Feng

Chinese Academy of Sciences

112 PUBLICATIONS 2,110 CITATIONS

SEE PROFILE

All content following this page was uploaded by Lei Wang on 01 March 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/322972484_Lazygraph_lazy_data_coherency_for_replicas_in_distributed_graph-parallel_computation?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/322972484_Lazygraph_lazy_data_coherency_for_replicas_in_distributed_graph-parallel_computation?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Optimization-on-Resource-Conflict?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Wang-465?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Wang-465?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Wang-465?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chen-Junhang?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chen-Junhang?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chen-Junhang?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fang-Lu-9?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fang-Lu-9?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fang-Lu-9?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaobing-Feng?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaobing-Feng?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaobing-Feng?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lei-Wang-465?enrichId=rgreq-24d7e887129800380eb7791007168df7-XXX&enrichSource=Y292ZXJQYWdlOzMyMjk3MjQ4NDtBUzo1OTkyMDQ1ODYwNjU5MjBAMTUxOTg3MjkxNDM2NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

LazyGraph: Lazy Data Coherency for Replicas in Distributed

Graph-Parallel Computation

Lei Wang
1
, Liangji Zhuang

1,2
, Junhang Chen

1,2
, Huimin Cui

1,2,*
, Fang Lv

1
, Ying Liu

1
, Xiaobing Feng

1,2

1
State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

2
University of Chinese Academy of Sciences

{wlei, zhuangliangji, chenjunhang, cuihm, flv, liuying2007, fxb}@ict.ac.cn

Abstract

Replicas
 1

 of a vertex play an important role in existing

distributed graph processing systems which make a single

vertex to be parallel processed by multiple machines and

access remote neighbors locally without any remote access.

However, replicas of vertices introduce data coherency

problem. Existing distributed graph systems treat replicas

of a vertex v as an atomic and indivisible vertex, and use an

eager data coherency approach to guarantee replicas

atomicity. In eager data coherency approach, any changes

to vertex data must be immediately communicated to all

replicas of v, thus leading to frequent global

synchronizations and communications.

In this paper, we propose a lazy data coherency

approach, called LazyAsync, which treats replicas of a

vertex as independent vertices and maintains the data

coherency by computations, rather than communications in

existing eager approach. Our approach automatically

selects some data coherency points from the graph

algorithm, and maintains all replicas to share the same

global view only at such points, which means the replicas

are enabled to maintain different local views between any

two adjacent data coherency points. Based on PowerGraph,

we develop a distributed graph processing system

LazyGraph to implement the LazyAsync approach and

exploit graph-aware optimizations. On a 48-node EC2-like

cluster, LazyGraph outperforms PowerGraph on four

widely used graph algorithms across a variety of real-world

graphs, with a speedup ranging from 1.25x to 10.69x.

CCS Concepts •Computing methodologies →

Distributed programming languages; Parallel

programming languages

Keywords Lazy Data Coherency, Distributed Graph-

parallel Computation, Execution Model

*To whom correspondence should be addressed.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

PPoPP '18, February 24–28, 2018, Vienna, Austria

© 2018 Association for Computing Machinery.

https://doi.org/10.1145/3178487.3178508

ACM Reference format:

Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui,

Fang Lv, Ying Liu, Xiaobing Feng. 2018. LazyGraph: Lazy

Data Coherency for Replicas in Distributed Graph-Parallel

Computation. In Proceedings of ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP’18). Vienna, Austria, 13 pages.

 https://doi.org/10.1145/3178487.3178508

1 Introduction

Efficient processing of large-scale graphs has gain

significant interest in both academia and industry recently.

Due to the desire to process tremendous graphs, many

graph processing systems have been proposed and been

able to run on distributed machines [1-14].

Replicas of vertices play an important role in existing

distributed graph processing systems. When placing a

graph-structured data across multiple machines, a single

vertex is spanned to multiple machines. Thus, replicas v0,

v1, …, vk of a vertex v make the single vertex v to be

parallel processed by multiple machines, thus each vertex

can access remote neighbors locally via the corresponding

replicas without any remote access. Many graph

partitioning algorithms [3,4,8,33,20-25] are proposed to

minimize the communication cost through reducing the

number of replicas.

However, replicas of vertices introduce the data

coherency problem. Existing distributed graph systems

treat all the replicas v0, v1, …, vk of a vertex v as an atomic

and indivisible vertex, and use an eager data coherency

approach to guarantee the atomicity. In the eager data

coherency approach, any changes to the vertex v must be

immediately communicated to all of its replicas, thus the

communication overhead is determined by the number of

machines spanned by each vertex and the frequency of data

synchronization for each vertex. The atomicity is strictly

maintained no matter in asynchronous or synchronous

engines. In particular, changes to vertex data are copied to

all replicas of v as soon as possible in the asynchronous

engine, while these changes are batch-processed in the

synchronous engine. Therefore, the eager data coherency

approach leads to frequent global synchronizations and

communications between replicas of a vertex, and

introduces significant overhead.

276

PPoPP '18, February 24–28, 2018, Vienna, Austria L. Wang, L. Zhuang, J. Chen, H. Cui, F. Lv, Y. Liu, X. Feng

For most graph algorithms, the data coherency between

replicas of a vertex can be delayed. Let us consider two

scenarios. First, in some graph algorithms, such as k-core,

breadth-first search and connected components, the

solution of a vertex depends only on a subset of its

neighbors. A replica can update its own vertex data

according to its local messages and send new messages to

its local neighbors. But in eager data coherency approach, a

replica has to wait for all replicas to finish their message

collection, thus introducing unnecessary waiting cost.

Second, for algorithms such as PageRank [49] and loopy

belief propagation [50], an iterative equation can be

expressed as 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 ⨁𝑗→𝑖∈𝐸𝛥𝑗

(𝑡)
 , where i is an

vertex id, t is an iterative count, +𝑜𝑝 and ⨁ represent

operations, 𝑥𝑖
(𝑡)

 is vertex data of i at iteration t, 𝛥𝑗
(𝑡)

is a

delta value (a change value) of vertex j at iteration t. The

vertex-program receives messages 𝛥𝑗
(𝑡)

 of all in-neighbors,

and then updates the new 𝑥𝑖
(𝑡+1)

 based on 𝑥𝑖
(𝑡)

, and sends

Δ𝑖
(𝑡+1)

 to its out-neighbors. The solution of a vertex can

incrementally change from the initial value, until a

convergence condition is reached. So a replica can receive

messages of multiple iterations from its local neighbors and

then communicate to other replicas.

In this paper, we propose a lazy data coherency

approach, called LazyAsync, to asynchronously execute

replicas of a vertex and reduce the number of global

synchronization and network traffic. The key idea is that

replicas of a vertex are treated as independent vertices, and

the coherency between these replicas are maintained via

calculation only at the data coherency points, which are

automatically selected from the algorithm by our approach.

LazyAsync works in the following steps. First, some edges

are heuristically identified to be split into parallel-edges. In

particular, an edge 𝑣 → 𝑢 is split into max(|V|,|U|) parallel-

edges, where V and U represent the replicas for v and u

respectively. Second, the graph is being processed on all

machines in the lazy mode between two adjacent coherency

points. Specifically, each replica maintains a version of the

vertex data and updates its vertex data using 𝑥𝑖
(𝑡+1)

=

𝑥𝑖
(𝑡)
+𝑜𝑝 ⨁𝑗→𝑖∈𝐸𝛥𝑗

(𝑡)
. During the processing, since V and U

are located on the same machine, the message passing

along the parallel-edges can be implemented as local write

operations, without introducing any global

synchronizations or communications. Finally, when the

graph algorithm reaches the data coherency point, each

machine collects the messages (delta) from all replicas,

aggregates the messages (delta) together and updates the

vertex data via some computations to obtain the global

view. Note that for graph algorithms, the vertex data can be

determined only by the initial value and the messages, in

regardless of the order of these messages.

Based on PowerGraph, we develop a distributed graph

processing system LazyGraph to implement the LazyAsync

approach. LazyGraph consists of two parts: First, for

programmers, LazyGraph maintains the same programming

interface of existing distributed graph processing systems,

but it requires the programmers to write the graph

algorithms into push-style vertex-programs and delta

propagations. Second, LazyGraph runtime provides the

underlying support for LazyAsync, including one-edge and

parallel-edges message transmission modes, together with

a mechanism to maintain the coherency of the replicas, by

expressing the computation of v0, v1, …, vk distributed on

different machines as a sequence of local computation

stages and data coherency stages.

This paper makes the following contributions:

1) We propose a lazy data coherency approach LazyAsync

for distributed graph processing. It automatically

selects some data coherency points from the graph

algorithm, and maintains the replicas to share the same

global view only at such points, which means the

replicas of a vertex are enabled to maintain different

local views between any two adjacent data coherency

points, and thus reduces the number of global

synchronization and communication volume, and

substantially accelerates the convergence of graph

algorithms.

2) We propose a parallel-edges message transmission

mechanism, which converts a message transmission

between replicas of two different vertices into multiple

local write operations, to avoid remote messages and

achieve rapid convergence on local computation.

3) Based on PowerGraph, we develop a distributed graph

processing system LazyGraph to implement LazyAsync

approach and exploit the graph-aware optimizations.

LazyGraph contains three graph-aware optimizations

including graph partitioning to support one-edge and

parallel-edges message transmission modes, adaptive

interval strategy selection between two adjacent data

coherency points, and dynamic switching between two

communication modes at data coherency points, i.e.,

all-to-all and mirrors-to-master.

4) Our experimental results show that on a 48-node EC2-

like cluster, LazyGraph outperforms PowerGraph on

four widely used graph algorithms across a variety of

real-world graphs, with a speedup ranging from 1.25x

to 10.69x.

2 Background and Motivation

2.1 Vertex Computation and GAS Model

Distributed graph processing systems, based on the “think

like a vertex” programming model [53], iteratively execute

a user-defined vertex-program over vertices of a graph.

Most of these systems abstract the vertex computation into

the Gather-Apply-Scatter (GAS) model [3]. The Gather
and Sum function collect information about the neighbors

of the vertex along in-edges, like a commutative associative

277

LazyGraph: Lazy Data Coherency for Replicas in Distributed … PPoPP '18, February 24–28, 2018, Vienna, Austria

combiner. The result is used in the Apply function, which

calculates and updates the vertex value. The Scatter
function sends messages and activates neighbors along out-

edges.

For example, Fig.1(a) shows k-core Decomposition (k-

core) algorithm pseudocode. A k-core of a graph is a

maximal connected subgraph in which each vertex is

connected to at least k vertices. K-core Decomposition is

based on following iterative equations:

 𝑜 𝑖
(𝑡+1)

= 𝑜 𝑖
(𝑡)
 ∑ 𝛥𝑗

(𝑡)

𝑗→𝑖 𝑜 𝑖→𝑗

 (1)

𝛥𝑖
(𝑡+1)

= 𝑜 𝑖
(𝑡+1)

 (2)

Where t is the t iteration, corei is the value of vertex i, and

Δi is whether vertex i is deleted or not. In Fig.1(a) an

active vertex v receives messages from its neighbors by

GatherMsg function, and combines these messages by Sum

function. accum is the number of edges which v needs to

delete and is returned by the GatherMsg function. In Apply

function, v.core is updated by accum; if v.core is less than

K, v is deleted. In Scatter function, if v is deleted, v sends 1

to its neighbors.

2.2 Replicas of Vertices

In distributed processing, a graph is a whole graph from a

user view and is a partitioned graph from system view.

Replicas (mirror vertices): Replicas of vertices play an

important role in existing distributed graph processing

systems. When placing graph-structured data across

multiple machines, existing distributed graph systems will

generate a large number of replicas of vertices. For

example, vertex-cut partitioning algorithms [3,5,8,20,21]

evenly assign the edges of a graph to machines and allow

the vertices to span machines, thus a single vertex can be

parallelized by multiple machines and access remote

neighbors locally without any remote access. Another

example is edge-cut partitioning algorithms [1,2,4,6,22-25]

which assign each machine a disjoint set of vertices and all

the connected incoming/outcoming edges. Two vertices

connected by each cut edge have two copies on both

machines, thus vertices can access remote neighbors locally

without any remote access. As vertex-cut partitioning

achieves better load balance on power law graphs than

edge-cut partitioning does, recent distributed graph systems

[3,5,8,9] use vertex-cut to place graph-structured data

across multiple machines. These systems will set up

replicas of vertices to enable computation, and the

automatic synchronization of these replicas requires

communication.

Replicas of vertices introduce three issues: the data

coherency between replicas of a vertex, the message

transmission between replicas of two different vertices, and

the order of replicas computation.

ISSUE Ⅰ (eager data coherency approach for

replicas): PowerGraph[3] and GraphX[5] represent two

different implementations. Fig.2.(a)(b) illustrate the

physical graph representations and implement the eager

data coherency approaches in PowerGraph and GraphX

respectively. To guarantee atomic update of replicas,

PowerGraph allows one of replicas (the master) maintain

an actual vertex data and all remaining replicas (mirrors)

maintain a local cached read only copy of the vertex data.

Any change to the vertex data must be made to the master

which is then immediately replicated to all mirrors. GraphX

initData(v): v.core = v.degree
initMsg: Activate(v, v.degree),

GatherMsg (v, msg): return msg;
Sum(a, b): return a+b;

Apply(v, accum):
 flag_delete = flase;
 if (v.core > 0){

v.core -= accum;
if (v.core < K){
 v.core = 0; flag_delete = true;

}}

Scatter(v, u):
 if (flag_delete == true){

if (u.core > 0) Activate (u, 1)

}

1

44

2

14

12

9

88

6

24

21

16

18

23

11

17

7

4 3

8

5

16

19

10

20

1818

 13

15

22

0

Machine 0 Machine 1

Accum/Msg

New Data

G G

A

S S

Accum/Msg

New Data

G G
A
S S

Accum/Msg

New Data

G G
A

S S

Accum/Msg

New Data

G G
A

S S

G
A
S

Gather

Accum/Msg

New Data

Apply
Scatter

Accum/Msg

New data

iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
iteration 6

vv

v

master

mirror

1

44

2

14

12

9

88

6

24

21

1616

1818

23

11

17

7

44 3

88

5

16

19

10

20

1818

 13

15

22

0

Machine 0 Machine 1

deltaMsg

deltaMsg

deltaMsg

deltaMsg

Init: 4.core = 5; 8.core = 5; 18.core = 11; 16.core = 3;
1 Local computation:
 40.core = 0, 40.deltaMsg = 4 ; 41.core = 5, 41.deltaMsg = 0;
 80.core = 4, 80.deltaMsg = 1 ; 81.core = 4, 81.deltaMsg = 1;
 180.core = 6, 180.deltaMsg = 5 ; 181.core = 8, 181.deltaMsg = 3;
 160.core = 0, 160.deltaMsg = 1 ; 161.core = 0, 161.deltaMsg = 1;
1 Data coherency :
 40.core = 0, 40.msg = 0 ; 41.core = 0, 41.msg = 4;
 80.core = 3, 80.msg = 1 ; 81.core = 3, 81.msg = 1;
 180.core = 3, 180.msg = 3 ; 181.core = 3, 181.msg = 5;
 160.core = 0, 160.msg = 1 ; 161.core = 0, 161.msg = 1;

(a) Pseudocode for k-core (b) 3-core decomposition using Sync (c) 3-core decomposition using LazyAsync

Figure 1. Illustration of the difference between eager/lazy data coherency for replicas

278

PPoPP '18, February 24–28, 2018, Vienna, Austria L. Wang, L. Zhuang, J. Chen, H. Cui, F. Lv, Y. Liu, X. Feng

[5] is an embedded graph processing framework built on

top of Spark general dataflow framework. The automatic

data coherency of these replicas is analogous to the cache

coherency in shared memory multi-processors system.

GraphX allows vertex collection to maintain actual vertex

data and all replicas to maintain a local cached read only

copy of the vertex data. When the eager data coherency

approach implements the Gather-Apply-Scatter model,

each phase has a global sync, each mirror sends one

accumulator to the master in gather phase, and the master

sends the updated vertex data to all mirrors in apply phase.

The approach needs two communications and three

synchronizations to update vertex data.

ISSUE Ⅱ (the message transmission between replicas

of two different vertices): When v sends a message msg to

u along an edge 𝑣 → 𝑢 , the systems need two

communications and three synchronizations to complete

this sending action. On a user view graph, v sends a

message to u along an edge 𝑣 → 𝑢. Now on a partitioned

graph, this message transmission becomes that replicas (v0,

v1, …, vk) send a message to replicas (u0, u1, …, up) on the

partitioned graph. Existing distributed graph processing

system uses a one-edge message transmission mode:

assuming the edge 𝑣 → 𝑢 assigned to machine i, vi collects

messages from v0, v1, …, vk across the network, and sends

these messages to uj along the local edge vi->uj, and then uj

sends these messages to u0, u1, …, up across the network.

This edge vi->uj becomes the bottleneck.
ISSUE Ⅲ (Sync and Async engines): A synchronous

engine (Sync) and an asynchronous engine (Async) [2,3]

provide different visibility timing of updated vertex data for

neighbor vertices, but both engines use the eager data

coherency approach to synchronize replicas of an active

vertex, and use the one-edge message transmission mode.

The major difference between Sync and Async modes is

the order of vertices computation, which provides different

visibility timing of updated vertex data for subsequent

vertex computation. Changes to vertex data are copied to

all replicas of v as soon as possible in Async engine, but

these changes are batch processed in Sync engine.

2.3 Redundancy

The eager data coherency approach for replicas of a vertex

introduces considerable redundancies. We use k-core

Decomposition algorithm to illustrate this problem. For

example, in Fig.1(b), the vertex-cut partitioning places a

small graph (25 vertexes and 41 edges) on two machines,

and let vertex 4, 8, 16, and 18 to span machines. When 3-

core decomposition uses Sync engine, after 6 iterations

with 12 communications and 18 global synchronizations,

vertex 3, 8, 10, 18 are found to connect a 3-core subgraph.

There are redundant synchronizations and communications.

a) Redundant waiting. The local messages of 40 are

enough to get the solution, but 40 has to wait the remote

messages of 41. Similarly, the local messages of 60 are

enough to get the solution, but 60 has to wait the remote

messages of 61. b) Frequent global synchronization and

communication. For vertex 18, there are 15

synchronizations and 10 communications between 180 and

181. v.core of 18 is updated to 9, 7, 6, 4, 3 from iteration

2~6 respectively. c) Redundant synchronizations. Local

vertices do not need to wait remote local vertices to

complete their calculations, e.g. vertex 2, 9, 11, 12, 23, 24

on machine 0 do not need to wait vertex 0,13, 20, 22 on

machine 1 to complete their calculations at the first

iteration. Although the asynchronous engine can eliminate

the third redundancy, it cannot solve the first and the

second redundancy.

2.4 Our approach

In this paper, we focus on leveraging the lazy data

coherency for replicas of a vertex to reduce the number of

global synchronizations and network traffic. We treat

replicas v0, v1, …, vk of a vertex v as independent vertices,

with each replica maintains a version of the vertex data and

updates its vertex data by 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 ⨁𝑗→𝑖∈𝐸𝛥𝑗

(𝑡)

iteration equation. Although replicas of v receive messages

in different order, they can obtain the same value as long as

they have the same initial value and receive the same

messages. LazyGraph expresses the computation of

replicas v0, v1, …, vk as a sequence of local computation

stages and data coherency stages, and maintains the

coherency between these replicas via calculation, which

merge local values and remote delta messages, only at the

data coherency points. Thus LazyAsync allows replicas of a

vertex to maintain different local views of the vertex

…… v.master

Topological edge and
vertex

Data
A

……

……

Acc

Msg

…… v.mirror

Topological edge and
vertex

Data

……

……

Acc

Msg
Acc/Msg

New Data

Machine 0 Machine 1

G S G S

(a) Distributed Graph Representation in PowerGraph

Triples

Vertex collection …… v

…… v.master

Topological edge and vertex

Data

A

……

……

Acc

Msg

A
cc

/M
sg

N
ew

 D
at

a

Machine 0

T
e
m

p
o

ra
ry

 V
a
ri

a
b

le

G S

N
ew

 D
ata

…… v.mirror

Topological edge and vertex

Data

……

……

Acc

Msg

Machine 1

T
e
m

p
o

ra
ry

 V
a
ri

a
b

le

G S

(b) Distributed Graph Representation in GraphX

Figure 2. Eager Data Coherency for Replicas of v

279

LazyGraph: Lazy Data Coherency for Replicas in Distributed … PPoPP '18, February 24–28, 2018, Vienna, Austria

between any two adjacent data coherency points and share

the same global view only at a data coherency point.

For example, when 3-core decomposition uses

LazyAsync in Fig.1(c), there is only one communication

and one synchronization. In LazyAsync 180 and 181 are

independent vertices. In the beginning, 180.core = 11 and

180.deltaMsg = 0, and 181.core = 11 and 181.deltaMsg = 0.

After the first local computation stage, 180.core = 6 and

180.deltaMsg = 5, and 181.core = 8 and 181.deltaMsg = 3.

And then at the first data coherency stage, replicas update

their local value by remote delta messages, that is

180.core=6–3=3 and 181.core=8 – 5=3.

3 Lazy Data Coherency Approach

To address the challenges of the eager data coherency for

replicas of a vertex, we introduce the lazy data coherency

approach, called LazyAsync.

1) It automatically selects some data coherency points

from the graph algorithm, and maintains the replicas to

share the same global view only at such points, which

means the replicas of a vertex are enabled to maintain

different local views between any two adjacent data

coherency points. (Section 3.2).

2) It supports two message transmission modes (one-edge

and parallel-edges) at the same time, but an edge of a

graph only uses one of the two modes, different edges

can use different modes. Thus this approach can

benefit from the two modes, one-edge transmission

mode to save memory, and parallel-edges mode to

save transmission cost and achieves rapid convergence

on local computation (Section 3.3).

3) It uses a vertex-cut and edge-split graph partitioning,

which uses a vertex-cut partitioning to place graph-

structured data across multiple machines, and then

splits some edges into parallel edges and assigns these

parallel edges to each machine (Section 4.1).

4) It provides LazyBlockAsync and LazyVertexAsync

engines to schedule the order of vertex computation

and to provide different visibility timing of updated

vertex data for subsequent vertex computation (Section

3.4).

3.1 Vertex Computation and Applications

LazyAsync maintains the same programming interface of

existing distributed graph processing systems, but it

requires the programmers to write the graph algorithms into

push-style vertex-programs and delta propagations. Like

existing distributed graph processing systems, a user-

defined vertex-program P in LazyAsync runs on a directed

graph G = {V, E} and computes in parallel on each vertex

𝑣 ∈ V. Vertices communicate directly with each other by

sending messages. A vertex can receive messages sent to it,

modify its data, and send messages to other vertices. An

edge is used to transmit messages. These actions are

expressed by the GatherMsg, Sum, Inverse, Apply and
Scatter functions of a vertex-program P. LazyAsync still

conforms to the GAS model.

Unlike existing distributed graph processing systems,

LazyAsync requires the vertex computation to be based on

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 ⨁𝑗→𝑖∈𝐸𝛥𝑗

(𝑡)
iterative equation, where i is

an vertex id, t is an iterative count, +𝑜𝑝 and ⨁ represent

operations, 𝛥𝑗
(𝑡)

is a delta value (a change value) of vertex j

at iteration t. The user defined Sum ⨁ operation must be

commutative and associative. In gather messages phase, a

vertex i receives messages Δ𝑗
(𝑡)

 sent to it and uses the Sum

⨁ operation to combine these messages to accum. accum is

used in apply phase to update the value of the central vertex

using 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 𝑎 𝑢𝑚 . Finally, in Scatter phase

the new change (delta) 𝛥𝑖
(𝑡+1)

 is sent to its neighbors along

adjacent edges.

In Fig.3 we implement PageRank using the LazyGraph

abstraction. For Single Source Shortest Path algorithms

(SSSP), Connected Components (CC) and k-Core,

LazyAsync and PowerGraph have the same codes. But for

PageRank, LazyAsync uses a variant of PageRank

(PageRank-Delta). PageRank is widely used to evaluate the

relative importance of webpages; the rank of webpages is

based on Equation (3).

 () = 5 + 5 ∑
 ()

o e ()
𝑗→𝑖∈𝐸

 (3)

Here we use PageRank-Delta in which 𝑖
(0)

 and 𝑖
(1)

 are

initial values, and 𝑖
(𝑡+1)

applies the iterative Equation (4).

 𝑖
(𝑡+1)

= 𝑖
(𝑡)
+ 5 ∑

 𝑗
(𝑡)
 𝑗

(𝑡 1)

o e ()
𝑗→𝑖∈𝐸

 (4)

In PageRank-Delta, the GatherMsg and Sum functions

receive the total delta contributions from neighbours, the

initData(v): v.rank = 0.15; Δ = -0.85;
initMsg: Activate(u, 1/v.outDegree), v->u ∈ E

GatherMsg(v, msg): return msg;
Sum(a, b): return a+b
Inverse(accum, a): return accum-a;

Apply(v, accum):
 Δ= 0.85 * accum;
 v.rank += Δ;
 Δ += Δ;
 if(Δ o) { Δ= 0.0; }
 else { Δ = Δ;}

Scatter(v, u)
 if(Δ o)
 Activate(u, Δ/v.outDegree)

Figure 3. Pseudocode for PageRank

280

PPoPP '18, February 24–28, 2018, Vienna, Austria L. Wang, L. Zhuang, J. Chen, H. Cui, F. Lv, Y. Liu, X. Feng

Apply function computes the new PR value and

accumulates the delta value, the Scatter function sends the

change (delta) in PR value to neighbours if it has

accumulated enough change (delta) in its PR value. In our

implementation, each vertex is initialized to 𝑖
(𝑖𝑛𝑖𝑡)

= 5

and 𝛥𝑖
(𝑖𝑛𝑖𝑡)

= 5 , and each edge is initialized to

𝑚𝑠𝑔𝑗→𝑖∈𝐸
(𝑖𝑛𝑖𝑡)

=
1

outDeg (𝑗)
. And then after the first iteration, we

can obtain 𝑖
(1)
= 5 + 5∑

1

outDeg (𝑗)𝑗→𝑖∈𝐸 and 𝛥𝑖
(1)
=

 𝑖
(1)
 𝑖

(0)
= 5 + 5∑

1

outDeg(𝑗)𝑗→𝑖∈𝐸 .

3.2 Lazy Data Coherency for Replicas

In LazyAsync, a user-defined vertex-program P runs on a

directed graph G = {V, E} in user view, but it actually runs

on a partitioned graph G in runtime system. When

LazyAsync places graph G across multiple machines, it

splits a vertex into multiple replicas distributed on different

machines. The runtime system will translate the API

functions of a user-defined vertex-program P into low level

graph operators, and use LazyAsync to asynchronously

parallelize the computation of a single vertex.

We now show how to use the lazy data coherency for

replicas to asynchronously parallelize the computation of a

single vertex. LazyAsync redefine how to calculate the

vertex data of replicas v0, v1, …, vk in the runtime system

and express the computation of replicas v0, v1, …, vk

distributed on different machines as a sequence of local

computation stages and data coherency stages (shown in

Fig.4). In the local computation stage, replicas of a vertex

maintain different local views of this vertex, and update

their local views with received messages from local

neighbors on the same machine; the new local views can be

visible to local neighbors immediately without waiting a

data coherency point; and replicas accumulate delta

messages received from local neighbors along the one-edge

transmission mode during a local computation stage. In the

data coherency stage, each replica sends its delta message

to the other remote replicas across the network and receives

delta messages of all the other remote replicas; and then

replicas run the apply operator on their local views with

others delta messages as parameter, and thus obtain the

same global view.

For each replica v on each machine, the runtime system

main-tains a number of variables:

 vdata[v], the local vertex data

 message[v], the message sent to v from its neighbors

 deltaMsg[v], the delta message accumulating all

messages which v receives from local neighbors along

the one-edge transmission mode during a local

computation stage

 replicas[v], the machines on which the replicas of v are

placed

 isActive[v], a state identifying v active or inactive

The runtime system translates the API functions of a

user-defined vertex-program into a number of low level

graph operators, and uses LazyAsync to asynchronously

parallelize the computation of a single vertex.

 Init(v), this operator uses the user initData and initMsg

functions to initialize vertices and messages

 Apply(v, message[v]), this operator uses the user Apply

function to update vdata[v], and then clear message[v]

 ScatterGatherMsg(v, u), when v sends a message msg

to local neighbor u along a local edge, this operator

directly writes this message msg into message[u] using

the user Scatte, GatherMsg and Sum functions. If the

edge uses one-edge transmission mode, this message

msg is accumulated into deltaMsg[u]; if the edge uses

parallel-edge transmission mode, msg isn‟t

accumulated into deltaMsg[u]. Finally, this operator

sets u to active and sets v to inactive.

 Exchange_deltaMsg(v, deltaMsg[v]), this operator has

all-to-all and mirrors-to-master communication modes

(shown in Fig.5), and allows dynamically switching

between the two modes to gain optimal performance. In

all-to-all mode (shown in Fig.5(a)), a replica v sends its

deltaMsg[v] to the other remote replicas of this vertex

across the network, and receives delta messages of all

the other remote replicas; accumulates other delta

messages into message[v] using the user Sum function,

 T
im

e

data

msg

deltaMsg

data

msg

deltaMsg

data

msg

deltaMsg

S G
A

S G
A

S G
A

S G
A

S G
A

S G
A

S G
A

S G
A

S G
A

v1.deltaMsg v2.deltaMsg v3.deltaMsg

G G G

v.replica1
(v1)

v.replica2
(v2)

v.replica3
(v3)

Local computation:
 apply(vdata, msg)

Communication

Sync

Data coherence point:
 apply(vdata,others.deltaMsg)

……

……

S G
A

S G
A

S G
A

 Figure 4. Lazy Data Coherency for replicas of v

v.replica1
deltaMsg

G G G

v.replica2
deltaMsg

v.replica3
deltaMsg

G

G G

v.replica1
(mirror)

deltaMsg

v.replica2
(master)
deltaMsg

v.replica3
(mirror)

deltaMsg

(a) all-to-all mode (b) mirror-to-master mode

Figure 5. Two communication modes

281

LazyGraph: Lazy Data Coherency for Replicas in Distributed … PPoPP '18, February 24–28, 2018, Vienna, Austria

and clears deltaMsg[v]. In mirrors-to-master mode

(shown in Fig.5(b)), all mirrors send their deltaMsg to

master across the network, and then master combines

all delta messages using the Sum function and sends the

new delta message to all mirrors; each replica subtracts

its deltaMsg[v] from the new delta message using the

Inverse function, accumulate the new delta message

into message[v] by using the Sum function, and clear

deltaMsg[v].

3.3 Two Message Transmission Modes

LazyAsync supports two message transmission modes,

message transmission along an edge or along parallel-edges

of an edge. When v sends messages to u, if the edge 𝑣 → 𝑢

uses one-edge mode, these messages will reach replicas of

u by the data coherency between replicas of u; if the edge

𝑣 → 𝑢 uses parallel-edges mode, these messages will reach

replicas of u along the local edge 𝑣 → 𝑢. Specifically, in

the one-edge transmission mode (shown in Fig.6(a)), an

edge 𝑣 → 𝑢 is assigned to a machine and connects a pair of

replica vi and replica uj. When replicas of v send messages

to all replicas of u, firstly each replica v sends its delta

message to the other remote replicas across the network,

and all replicas of v obtain the same global view through

the data coherency; and then replica vi sends a message to

replica uj along the edge v->u; finally uj sends this delta

message to all other replicas of u at the data coherency

stage. In the parallel-edges transmission mode (shown in

Fig.6(b)), an edge v->u is split into multiple parallel-edges,

and each parallel-edges connects each pair of replica vi and

replica ui. When replicas of v send messages to all replicas

of u, firstly each replica v sends its delta message to other

remote replicas across the network, and all replicas of v

obtain the same global view through the data coherency;

and then each replica v send a message to each replica u

along a local edge of parallel-edges. There is no the data

coherency among replicas of u, because messages from all

replicas of v arrive each replica u via the local edge of

parallel-edges. The parallel-edges mode is only suitable for

the edge with read-only values.

Fig.6 shows the two message transmission modes, in a

user view, a vertex v receives messages msg0 and msg1,

updates its data, and then sends a message to its neighbor u

along an edge v->u. Fig.6(a) is a one-edge mode, an edge v-

>u is assigned to machine 0, a replica of v (v0) receives

msg0, another replica v1 receives msg1. Propagating msg0

to u needs two stages, and propagating msg1 to u needs

four stages. Fig.6(b) is a parallel-edges mode, the parallel-

edges of an edge v->u are assigned on two machines, v0

receives msg0, v1 receives msg1. Propagating msg0 or

msg1 to u needs three stages. In the parallel-edges mode,

edges are not the bottleneck, and messages can be sent to

neighbours as soon as possible.

Our distributed graph system supports the two message

transmission modes at the same time, but an edge of a

graph only uses one of the two modes, different edges can

use different modes. Some edges of a vertex u may use the

one-edge transmission mode, and some other edges may

use the parallel-edges mode (shown in Fig.7(b)).

How does this vertex u maintain the data coherency of

replicas? When a replica ui receives a message from its

neighbors along a local edge, if this local edge is the one-

edge transmission mode, this message is accumulated into

the delta message of ui; otherwise this message isn‟t

accumulated into the delta message of ui. Thus at the data

v0

u0

msg0

v1

u1

S G

A

A

deltaMsg

deltaMsg

A

A

Machine0 Machine1

e

v0

u0

msg1

v1

u1

S G

A

A

deltaMsg

deltaMsg

A

A

Machine0 Machine1

e

user view

v

u

msg0 msg1

(a) One-edge mode

v0

u0

msg0

v1

u1

S G

A

A

deltaMsg A

S G

A

Machine0 Machine1

e e

v0

u0

v1

u1

S G

A

A

deltaMsg A

S G

A

msg1

Machine0 Machine1

e e

stage 1

stage 2

stage 3

stage 4

 (b) Parallel-edges mode

Figure 6. Two message transmission modes, v sends

messages to u along one edge or along parallel-edges.

v1

u1

msg2

v2

u2

Machine1 Machine2

msg1

e

msg0

w3

u3

Machine3

v0

o0

Machine0

msg3

one-edge

e
parallel-edge

(a) Message path on one-edge mode

v1

u1

msg2

v2

u2

Machine1 Machine2

msg1msg0

w3

u3

Machine3

v0

o0

Machine0

e e

v3

e

msg3

msg0

msg1

msg2

msg3

(b) Message path on two transmission modes

Figure 7. Message transmission path

282

PPoPP '18, February 24–28, 2018, Vienna, Austria L. Wang, L. Zhuang, J. Chen, H. Cui, F. Lv, Y. Liu, X. Feng

coherency stage, only messages from the one-edge

transmission mode are exchanged, and each replica u

updates its data.

 Fig.7 shows message transmission path on the two

transmission modes. In Fig.7(a) an edge v->u is the one-

edge transmission mode and is assigned in machine 1. v is

split into multiple replicas v0, v1, and v2 in machine 0, 1

and 2. u is split into multiple replicas u1, u2, and u3 in

machine 1, 2 and 3. Messages received by v0 and v2 are

sent to v1, and then reach u1 along the edge v->u, and

finally are sent to u2 and u3 by u1. In Fig.7(b) an edge v->u

uses parallel-edges transmission mode and an edge w->u

uses one-edge transmission mode. The edge v->u must be

assigned to all the machines replicas of u stored on.

Messages received by v0, v1 and v2 are sent to v1, v2 and

v3, and then reach u1, u2, and u3 along parallel-edges v1-

>u1, v2->u2 and v3->u3, respectively. Message msg3

received by w3 reaches u3 along the edge w->u and then

are sent to u1 and u2.

3.4 LazyBlockAsync and LazyVertexAsync Engines

LazyAsync provides LazyBlockAsync and LazyVertexAsync

engines to schedule the order of vertex computation and to

provide different visibility timing of updated vertex data for

subsequent vertex computation. Algorithm 1 shows the

LazyBlockAsync engine. All the vertices enter local

computation stage and data coherency stage at the same

time, and a global barrier to synchronize vertex execution

follows the delta messages exchanges in the data coherency

stage. It is possible for batched data update and well-

optimized network message dispatching with high resource

utilization. Algorithm 2 shows the LazyVertexAsync engine,

which has no global barrier to synchronize vertex execution,

and the updated vertex global view is visible to neighboring

vertices as soon as possible. The LazyVertexAsync engine

emphasizes the fast convergence speed, and hides the

network latency by pipeline of vertex processing.

3.5 Correctness

In this section, we state the main correctness results of the

lazy data coherency approach LazyAsync.

PROOF. Firstly, given the initial values 𝑥𝑖
(0)

and 𝑥𝑖
(1)

, the

new value 𝑥𝑖 of the vertex i applies the iterative equation

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 ⨁𝑗→𝑖∈𝐸Δ𝑗

(𝑡)
. Since the sum ⨁ operation

defined by the user must be commutative and associative,

the value acc m = ⨁𝑗→𝑖∈𝐸Δ𝑗
(𝑡)

 is independent of the

sequence of messages Δ𝑗
(𝑡)

 along an edge → .

The iterative equation can be expressed as in

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 Δ𝑗1

(𝑡)
 +𝑜𝑝Δ𝑗2

(𝑡)
+𝑜𝑝 +𝑜𝑝Δ𝑗𝑘

(𝑡)
 1 𝑘 → ∈

and the new value 𝑥𝑖
(𝑡+1)

 is also independent of the

sequence of messages Δ𝑗1 𝑘
(𝑡)

.

And then the iterative equation can be expanded into

multiple iterations as in:

𝑥𝑖
(𝑡+1)

= (𝑥𝑖
(𝑡 1)

+𝑜𝑝 ⨁𝑗→𝑖∈𝐸Δ𝑗
(𝑡 1)

)+𝑜𝑝 ⨁𝑗→𝑖∈𝐸Δ𝑗
(𝑡)

= 𝑥𝑖
(𝑡 1)

+𝑜𝑝 Δ𝑗1
(𝑡 1)

 +𝑜𝑝 +𝑜𝑝Δ𝑗𝑘
(𝑡 1)

+𝑜𝑝 Δ𝑗1
(𝑡)
 +𝑜𝑝 +𝑜𝑝Δ𝑗𝑘

(𝑡)

= 𝑥𝑖
(1)
+𝑜𝑝⨁𝑗→𝑖∈𝐸⨁

𝑖𝑡𝑒 ∈1~𝑡Δ𝑗
(𝑖𝑡𝑒)

; 1 𝑘 → ∈

and the new value 𝑥𝑖
(𝑡+1)

 is obtained by 𝑥𝑖
(1)

 accumulating

these delta messages Δ𝑗1 𝑘
(𝑡1 𝑡), and is also independent of the

Algorithm 1. LazyBlockAsync Engine

Input: G(V, E, D)
Input: Initial active vertex set activeCurr
1. while(iteration <= max_iteration) {
2.
3. Stage1: local computation stage
4. if(doLocal){
5. parallel_for(acitveCurr){
6. if (activeCurr == NULL || !doLC()) break;
7. Applys();
8. ScatterGatherMsgs();
9. activeCurr = activeNext; activeNext = NULL;
10. }}
11.
12. Stage2: data coherency stage
13. Exchange_deltaMsgs();
14. barrier();
15. if(msgEmpty() && activeEmpty()) break;
16. if(!doLocal && turnOnLazy())
17. doLocal = 1;
18. // data coherency point
19. parallel_for(acitveCurr){
20. Applys();
21. ScattersGatherMsgs();
22. acitveCurr = NULL;
23. }
24.
25. activeCurr = activeNext; activeNext = NULL;
26. iteration ++;
27. }

Algorithm 2. LazyVertexAsync Engine

Input: G(V, E, D)
Input: Initial active vertex set activeCurr
1. while(!activeVEmpty()) {
2. v = dequeue(acitveCurr);
3. if (!needDataCoherency(v)) {
4. Stage1: local computation stage
5. Applys();
6. ScatterGatherMsgs();
7. enqueue(activeCurr);
8. } else {
9. Stage2: data coherency stage
10. Exchange_deltaMsgs();
11. // data coherency point
12. Applys();
13. ScattersGatherMsgs();
14. enqueue(activeCurr);
15. }

16. }

283

LazyGraph: Lazy Data Coherency for Replicas in Distributed … PPoPP '18, February 24–28, 2018, Vienna, Austria

sequence of these delta messages.

Secondly, assuming 𝑥𝑖 is split into three replicas 𝑥𝑖1, 𝑥𝑖2

and 𝑥𝑖3 , the edges 1 𝑘 → are equally assigned to each

replica of 𝑥𝑖, e.g. the edges 1 𝑝 → 1, the edges 𝑝+1 𝑙 →

 2, and the edges 𝑙+1 𝑘 → 3. These edges use one-edge

mode. The three replicas respectively apply these iterative

equations as in:

𝑥𝑖1
(𝑡+1)

= 𝑥𝑖1
(𝑡)
+𝑜𝑝 ⨁𝑙𝑜𝑐𝑎𝑙 𝑗1 𝑝→𝑖1Δ𝑗

(𝑡)
+𝑜𝑝 ⨁ 𝑒𝑚𝑜𝑡𝑒 𝑗𝑝+1 𝑘→𝑖2,3Δ𝑗

(𝑡)

𝑥𝑖2
(𝑡+1)

= 𝑥𝑖2
(𝑡)
+𝑜𝑝 ⨁𝑙𝑜𝑐𝑎𝑙 𝑗𝑝+1 𝑙→𝑖2Δ𝑗

(𝑡)
+𝑜𝑝 ⨁ 𝑒𝑚𝑜𝑡𝑒 𝑗1 𝑝,𝑙+1 𝑘→𝑖1,3Δ𝑗

(𝑡)

𝑥𝑖3
(𝑡+1)

= 𝑥𝑖3
(𝑡)
+𝑜𝑝 ⨁𝑙𝑜𝑐𝑎𝑙 𝑗𝑙+1 𝑝→𝑖3Δ𝑗

(𝑡)
 +𝑜𝑝 ⨁ 𝑒𝑚𝑜𝑡𝑒 𝑗1 𝑙→𝑖2,3Δ𝑗

(𝑡)

And then the three replicas respectively apply these

iterative equations as in:

𝑥𝑖1,2,3
(𝑡+1)

= 𝑥𝑖11,2,3
(1)

+𝑜𝑝⨁𝑗→𝑖∈𝐸⨁
𝑖𝑡𝑒 ∈1~𝑡Δ𝑗

(𝑖𝑡𝑒)
; 1 𝑘 → ∈

As they have the same initial value 𝑥𝑖
(0)

and 𝑥𝑖
(1)

 and receive

the same delta messages, they can obtain the same value

after the apply operation at data coherency stage.

Thirdly, assume the edges 1 → use parallel-edge mode,

each replica of 𝑥𝑖 has this edge. And thus Δ𝑗1
(𝑡)

 is local

messages for 𝑥𝑖1 , 𝑥𝑖2 and 𝑥𝑖3 , and isn‟t sent to remote

replicas.

Now, we can conclude that the eager data coherency for

replicas of a vertex is equal to the lazy data coherency for

replicas. □

4 The LazyGraph System

In this section, we build a distributed graph processing

system, called LazyGraph, to implement the LazyAsync

execution approach. LazyGraph extends PowerGraph

system to support LazyAsync engine and exploits the graph-

aware optimizations to gain high performance. LazyGraph

has implemented LazyBlockAsync engine based on the

Sync engine, and will implement LazyVertexAsync engine

based on the Async engine in the future.

4.1 Graph Loading and Partitioning

In LazyGraph, each machine starts from loading a separate

subset of the graph. The graph partitioning in LazyGraph

consists of a vertex-cut partitioning algorithm and an edge

splitter. After loading, the vertex-cut partitioning places the

graph structure and data across multiple machines by

evenly assigning edges to machines and allowing vertices

to span machines. The vertex-cut partitioning algorithm can

be one of random-cut, coordinated-cut, grid-cut and hybrid-

cut. Then the edge splitter selects some edges to be

parallel-edges and dispatches these parallel edges to where

they should be.

The edge splitter has three key elements. 1) Parallel-

edges selecting criterion. An edge connecting two high-

degree vertices or an edge with low-out-degree source and

low-degree target will be split into parallel-edges. The

former helps rapid convergence of the local computation,

and the latter saves transmission cost. 2) The number of

parallel-edges PEhigh and PElow comes from the solution of

the equations, [PEhigh*(P - 1) + PElow*(P/3)] / P = TEPS *

textra and PElow = PEhigh * 550, where PEhigh is the number

of high-degree parallel-edges, PElow is the number of low-

degree parallel-edges, P is the number of machines, TEPS

is a „traversed edges per second‟ rate and represents a

machine performance, textra is an extra execution time

introduced by parallel-edges and set by a user. The edge

splitter determines the proportion of parallel-edges

according to textra. 3) Dispatching parallel-edges follows the

rule, that in the final distributed graph parallel-edges v->u

must appear on all the machines replicas of u stored for

unidirectional algorithms, or on all the machines all

replicas of v and u stored for bidirectional algorithms. The

edge splitter dispatches each parallel-edges v->u, until all

parallel-edges don‟t violate this rule.

4.2 Graph-Aware LazyBlockAsync Engine

LazyGraph implements the LazyBlockAsync execution

model defined in Section 3.4 and exploits graph-aware

optimizations to gain high performance.

4.2.1 Adaptive Interval Between Two Adjacent Data

Coherency Points

How long the data coherency for replicas should be delayed?

To answer this question, a challenge faced by LazyGraph is

input and algorithm sensitivity, where the best interval

strategy may vary with different input sets and different

algorithms. We adopt a machine learning technique to build

an input-behavior-interval model, which predicts an

optimal interval for an arbitrary input and algorithm.

The input-behavior-interval model includes two

components, “is it a good time to turn on lazy mode?” and

“how long does the local computation stage execute?” The

first component is a classification problem, classifying the

running status whether or not to turn on the lazy mode

(turnOnLazy() function in Line 16 of Algorithm 1). We

select decision trees method to learn the classification, and

select the following features to train the model:

1) Locality of an input graph. We use E/V ratio and the

replication factor λ (which is the average number of

replicas for a vertex) to express the locality of a graph.

(a)Interval strategy on SSSP (b) communication modes

Figure 8. Graph-aware Optimizations

284

PPoPP '18, February 24–28, 2018, Vienna, Austria L. Wang, L. Zhuang, J. Chen, H. Cui, F. Lv, Y. Liu, X. Feng

Table 1 shows λ of real-world graphs using

coordinated-cut on 48 partitions. λ, from small to large,

is road graphs, web graphs and social graphs.

2) Characteristic of a graph algorithm. Many graph

algorithms proceed iteratively, updating the graph data

in rounds until a fixpoint is reached. The number of

active vertices, 𝑣 𝑛𝑡𝑡 , is different on each iteration.

We use a changing trend of the number of active

vertices to describe the algorithm characteristic,

 rend =(cn t-1- cn t)/ cn t-1. We count the number

of active vertices 𝑣 𝑛𝑡𝑡 at each data coherency stage, if

the trend is negative, the graph algorithm is in the

ascent part; otherwise, in the descent part.

3) We set the first iteration without the local computation

stage. After achieving 𝑥𝑖
(1)

 and 𝛥𝑖
(1)

 based on 𝑥𝑖
(0)

 at

the first data coherency stage, LazyGraph begins

executing a sequence of the two stages.

The second component of the input-behavior-interval

model is how long does the local computation stage

execute? The execution time of this stage should not be a

fixed length. We collect the execution time T of the first

iteration at each local computation stage online, and set

execution time of this stage no more than x*T (doLC()

function in Line 6 of Algorithm 1).

After training, the first component of the input-behavior-

interval model is that the lazy mode is turned on when the

controlling condition (E/V <= 10 || (trend >= 0.07)) is

satisfied. And the second component is set as 3T. The

input-behavior-interval model means that if the locality of a

graph is poor, the ascent part should synchronize frequently

between replicas, and the descent part should synchronize

rarely between replicas; but if the locali ty is good, both

ascent and descent parts should synchronize rarely between

replicas.

In Fig.8(a) we compare the performance of the adaptive

interval strategy against a simple strategy, where the lazy

mode always turns on and each local computation stage

executes to convergence. The adaptive interval strategy

does help LazyGraph gain high performance.

4.2.2 Communication Modes Switch

LazyGraph can dynamically switch between all-to-all and

mirrors-to-master communication modes when exchanging

delta messages at data coherency stage. All-to-all mode is

appropriate for a small amount of communication traffic,

and mirrors-to-master mode is appropriate for a large

amount of traffic. After experiments (shown in Fig.8(b)),

we observe that the communication time and the amount of

traffic have a linear relationship for all-to-all mode,

 a2a= 29comma2a+ 4 and a polynomial

relationship for mirrors-to-master mode

 m2m=-6* -7*commm2m
2 + 45*commm2m+ 3.

At data coherency stage, we use the following equations

to calculate the communication volume as in:

 𝑜𝑚𝑚𝑎2𝑎 =∑ 𝑣
ℎ𝑎𝑠𝐷𝑒𝑙𝑡𝑎𝑀𝑠𝑔

∗ (𝑁𝑢𝑚𝑣) ∗ 𝑠 𝑧 𝑜 (𝐷 𝑙𝑡𝑎𝑀𝑠𝑔)
𝑣∈𝑉

 𝑜𝑚𝑚𝑚2𝑚 =∑ (𝑣
ℎ𝑎𝑠𝐷𝑒𝑙𝑡𝑎𝑀𝑠𝑔

+ 𝑁𝑢𝑚𝑣 2) ∗ 𝑠 𝑧 𝑜 (𝐷 𝑙𝑡𝑎𝑀𝑠𝑔)
𝑣∈𝑉

where 𝑣
ℎ𝑎𝑠𝐷𝑒𝑙𝑡𝑎𝑀𝑠𝑔

 is the number of v‟s replicas having

deltaMsg, 𝑁𝑢𝑚𝑣 is the number of v‟s replicas. And then we

use two equations to estimate the communication times of

all-to-all and mirrors-to-master modes, and select the faster

one.

5 Evaluation

In this section, we compared the performance of the

LazyGraph against Sync and Async of PowerGraph on a

48-node EC2-like cluster.

5.1 Experimental Methodology

We compare LazyGraph with the lazyBlockAsync engine

against PowerGraph with Sync and Async engines, and

report the average results of three runs for each experiment.

The compiler used is GCC 4.8.1. All experiments are

performed on a 48-node EC2-like cluster. Each node has 8

Intel Xeon cores, 32 GB of memory, and connected via 1

GigE Ethernet. We use coordinated vertex-cut partitioning

algorithm to evaluate LazyAsync, Sync and Async.

Table 1 summarizes the large graphs used in our

experiments. These real-world graphs were taken from the

Stanford Large Network Dataset Collection [31], the

Laboratory for Web Algorithmic [46], and the DIMACS

shortest paths challenge [32].

5.2 Performance

Fig.9 shows the overall speedup of LazyGraph and

PowerGraph Sync for the four algorithms with different

real-world graphs on 48 machines. LazyGraph outperforms

PowerGraph Sync on all four algorithms: the speedups

range from 1.25x to 10.69x across a variety of real-world

graphs over PowerGraph, with an average speedup of 3.95x

on k-Core, 3.1x on PageRank, 4.57x on SSSP and 3.91x on

CC. A performance comparison between LazyGraph and

PowerGraph Async is shown in Section 5.4.

The largest improvements are on the road graph, the

smallest improvements are on the twitter graph, but for

other graphs, the improvements are different on the four

algorithms. For example, for UK-2005, compared with the

PowerGraph Sync, LazyGraph achieves the speedups of

3.48x on SSSP and 1.49x on CC. But for com-youtube,

compared with PowerGraph Sync, LazyGraph achieves the

speedups of 3.54x on SSSP and 4.44x on CC.

5.3 Explaining the Performance Improvement

The speedup of LazyGraph demonstrated in Fig.9 is due to

reducing the number of global synchronizations and

communication traffic. Since any changes to vertex data

must be immediately communicated to all replicas of v, the

eager data coherency approach leads to frequent global

285

LazyGraph: Lazy Data Coherency for Replicas in Distributed … PPoPP '18, February 24–28, 2018, Vienna, Austria

synchronization and communication. Fig.10 shows the

number of global synchronizations for LazyGraph and

PowerGraph Sync, normalized by PowerGraph Sync.

Fig.11 shows the communication traffic for LazyGraph and

PowerGraph Sync. The strong correlation between Fig.9

and Fig.10/Fig.11 illustrates that decreasing the number of

global synchronizations and communication traffics leads

to the performance improvement.

 Note that in Fig.9, 10 and 11, the speedup rate of our

approach largely depends on the replication factor λ of

input graphs, and is independent of the graph sizes and the

number of iterations. The lower λ of the input graph, the

greater the speedup of LazyGraph. λ is 2.09 (roadNet-CA)

< 2.14 (road-USA) < 2.47 (web-Google) < 2.7 (com-

youtube) < 3.51 (UK-2005) < 4.96 (soc-LiveJournal) <

5.52 (twitter) < 7.22 (enwiki), respectively.

5.4 Scalability

We evaluate the scalability of LazyGraph, PowerGraph

Sync and Async with the increasing number of machines

on PageRank and SSSP algorithms with UK-2005, road-

USA, and twitter graphs. These three graphs represent web,

road and social networks, respectively. As shown in

Fig.12(a-f), LazyGraph has a good scalability when the

machines number increases. Note that in Fig.12(e),

PowerGraph Async does scale with machines on PageRank

with twitter graph, but gets performance degradation on

SSSP and PageRank with web and road graphs, when the

machine number is larger than 16. Fig.12(g)(h) show the

speedups of LazyGraph, PowerGraph Sync and Async for

PageRank and SSSP with these three graphs on 16

machines and 24 machines. LazyAsync has a better

scalability than Async.

6 Related Work

Table 1. Real-world graphs used for evaluation
 Graph #V #E E/V λ

web
UK-2005 40M 936M 23.73 3.51

web-Google 0.9M 5.1M 5.83 2.47

road
road_USA_net 24M 58M 2.44 2.14

roadNet-CA 2M 5.5M 2.82 2.09

social

twitter 61.58M 1468M 23.85 5.52

soc-LiveJournal 4.84M 68.9M 14.23 4.96

enwiki 4.2M 101.36M 24.09 7.22

com-youtube 1.1M 6M 5.27 2.70

(a) k-core (b) PageRank (c) SSSP (d) CC

Figure 9. Speedup comparisons for k-Core, PageRank, SSSP and CC on real-world graphs on 48 machines

(a) k-core (b) PageRank (c) SSSP (d) CC

Figure 10. Normalized number of global synchronizations for k-Core, PageRank, SSSP and CC on 48 machines

(a) k-core (b) PageRank (c) SSSP (d) CC

Figure 11. Normalized Communication traffic for k-Core, PageRank, SSSP and CC on 48 machines

286

PPoPP '18, February 24–28, 2018, Vienna, Austria L. Wang, L. Zhuang, J. Chen, H. Cui, F. Lv, Y. Liu, X. Feng

A large number of graph-parallel systems [1-19] have been

proposed to process large-scale graphs. Pregel[1],

Giraph[6], Cyclops[48], GraphX[5] and Gemini[4] adopt

the Bulk Synchronous Parallel (BSP) model which has a

global synchronization after each iteration. GraphLab[2],

PowerGraph[3], PowerLyra[8], Trinity[7] and GRACE[19]

provide Sync and Async engines to process a graph.

PowerSwitch allows dynamic switching between sync and

async engines to gain optimal performance. However, all of

them use eager data coherency for replicas of a vertex,

which leads to frequent global synchronization and

communication. LazyGraph uses the lazy data coherency

approach LazyAsync to solve this problem.

Recently, Hieroglyph[52] enables each replica to

independently update its local data as well. But there are

three differences between Hieroglyph and LazyGraph. 1)

Hieroglyph focuses on decoupling computations from

communications to obtain locally sufficient computation;

LazyGraph focuses on delaying the data coherency

between replicas to reduce the number of global

synchronizations and network traffic. 2) In Hieroglyph,

user-defined functions resolve the inconsistency. In

LazyGraph, the system automatically maintains the data

coherency for replicas. 3) LazyGraph supports two

transmission modes. Hieroglyph supports one-edge mode.

Many works have attempted to optimize distributed

graph processing systems from graph partitioning

[3,4,8,33,20-25] to reduce communication cost and load

imbalance, overlapping communication and computation

[4,34,35] to achieving scalability, and accelerating

computation by using multi-core[15-19,55,56] and

GPU[44,45,54]. If putting these optimizations and the

LazyAsync execution model together, the distributed graph

system will achieve good efficiency and scalability.

There are other works that focus on graph querying

systems [36-38], machine learning and data mining systems

[43], temporal analytics [39-42], and streaming processing

systems [47]. For distributed parallel graph algorithms, it

could also be beneficial to apply lazy data coherency

approach LazyAsync in LazyGraph to boost performance.

7 Conclusion

In this paper, we propose a lazy data coherency approach,

called LazyAsync, which treats replicas of a vertex as

independent vertices and maintains the data coherency by

computations, rather than communications in existing eager

approach. LazyAsync delays the data coherency between

replicas of a vertex, asynchronously executes replicas of a

vertex and reduces the number of global synchronization

and network traffic. Based on PowerGraph, we develop a

distributed graph processing system called LazyGraph that

1) uses the LazyAsync approach as the execution model to

reduce the number of global synchronization and

communication; 2) supports two message transmission

modes at the same time to benefit from one-edge mode on

saving computation and parallel-edges mode on saving

transmission cost; 3) exploits graph-aware optimizations

including adaptive interval strategy between two adjacent

data coherency points, dynamic switching between all-to-

all and mirrors-to-master communication modes. On a 48-

node EC2-like cluster, LazyGraph outperforms

PowerGraph across a variety of real-world graphs, with a

speedup ranging from 1.25x to 10.69x.

Acknowledgments

We thank all the reviewers for their valuable comments and

suggestions. This work was supported in part by the

National Key Research and Development Program of

China (2017YFB0202002), the National Natural Science

Foundation of China (61402445, 61521092, 61432016,

61432018, 61332009, U1736208).

(a) PageRank on UK-2005 (b) SSSP on UK-2005

(c) PageRank on road-USA (d) SSSP on road-USA

(e) PageRank on twitter (f) SSSP on twitter

(g)Speedup on 16 machines (h)Speedup on 24 machines

Figure 12. (a-f) Comparison between PowerGraph and

LazyGraph for PageRank and SSSP on increasing

machines. (g,h) Speedup comparison on 16 machines and

24 machines.

287

LazyGraph: Lazy Data Coherency for Replicas in Distributed … PPoPP '18, February 24–28, 2018, Vienna, Austria

References
[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I.

Horn, N. Leiser, and G. Czajkowski. Pregel: A System for

Large-Scale Graph Processing. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of

data (SIGMOD 2010), ACM, pp. 135-146, 2010.

[2] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,

and J. M. Hellerstein. Distributed Graphlab: a Framework

for Machine Learning and Data Mining in the Cloud. In

Proceedings of the VLDB Endowment, pp. 716-727, 2012.

[3] Guestrin. PowerGraph: Distributed Graph-Parallel

Computation on Natural Graphs. In Proceedings of the 10th

USENIX conference on Operating Systems Design and

Implementation (OSDI, 2012), pp. 17-30, 2012.

[4] X. Zhu, W. Chen, W. Zheng and X. Ma. Gemini: A

Computation-Centric Distributed Graph Processing System.

In Proceedings of t 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 2016), pp. 301-

316, 2016.

[5] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.

Franklin and I. Stoica. Graphx: Graph Processing in A

Distributed Dataflow Framework. In Proceedings of the 11th

USENIX conference on Operating Systems Design and

Implementation (OSDI 2014), pp. 599-613, 2014.

[6] C. AVERY. Giraph: Large-scale graph processing

infrastructure on hadoop. In Proceedings of the Hadoop

Summit, 2011.

[7] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed Graph

Engine on A Memory Cloud. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of

Data (SIGMOD 2013), ACM, pp. 505-516, 2013.

[8] R. Chen, J. Shi, Y. Chen, and H. Chen 。 Powerlyra:

Differentiated Graph Computation and Partitioning on

Skewed Graphs. In Proceedings of the Tenth European

Conference on Computer Systems (EuroSys 2015), 2015.

[9] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. Sync or

Async: Time to Fuse for Distributed Graph-Parallel

Computation. In Proceedings of the 20th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (PPoPP 2015), 50(8), pp. 194-204, 2015.

[10] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel.

Chaos: Scale-out Graph Processing from Secondary Storage.

In Proceedings of the 25th Symposium on Operating

Systems Principles (SOSP 2015), ACM, pp. 410-424, 2015.

[11] S. Seo, E. J. Yoon, J. Kim, and S. Jin。 Hama: An Efficient

Matrix Computation with the Mapreduce Framework. In

Proceedings of 2010 IEEE Second International Conference

on Cloud Computing Technology and Science (CloudCom

2010), IEEE, pp. 721-726, 2010.

[12] D. Gregor, and A. Lumsdaine. The Parallel BGL: A Generic

Library for Distributed Graph Computations. In

Parallel Object-Oriented Scientific Computing, 2015.

[13] I. Hoque, and I. Gupta. LFGraph: Simple and Fast

Distributed Graph Analytics. In Proceedings of the First

ACM SIGOPS Conference on Timely Results in Operating

Systems (SIGOPS 2013), 2013.

[14] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J.

Zaki, and A. Aboulnaga. Arabesque: A System for

Distributed Graph Mining. In Proceedings of the 25th

Symposium on Operating Systems Principles (SOSP 2015).

pp. 425-440, 2015.

[15] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight

Infrastructure for Graph Analytics. In Proceedings of the

TwentyFourth ACM Symposium on Operating Systems

Principles (SOSP 2013), pp. 456-471, 2013.

[16] J. Shun, and G. E. Blelloch. Ligra: A Lightweight Graph

Processing Framework for Shared Memory. In Proceedings

of the 18th ACM SIGPLAN symposium on Principles and

practice of parallel programming (PPoPP 2013), 48(8), pp.

135-146, 2013.

[17] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor,

M. J. Anderson, S. G. Vadlamudi, D. Das, and P. Dubey.

Graphmat: High performance graph analytics made

productive. In Proceedings of the VLDB Endowment

(VLDB 2015), 8(11), pp. 1214-1225, 2015.

[18] K. Zhang, R. Chen, and H. Chen. NUMA-Aware Graph-

Structured Analytics. In Proceedings of the 20th ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP 2015), pp. 183-193, 2015.

[19] G. Wang, W. Xie, A. J. Demers, and J. Gehrke.

Asynchronous Large-Scale Graph Processing Made Easy. In

CIDR. 2013.

[20] U. V. Catalyurek, and C. Aykanat. Decomposing Irregularly

Sparse Matrices for Parallel Matrix Vector Multiplication. In

Proceedings of the Third International Workshop on Parallel

Algorithms for Irregularly Structured Problems

(IRREGULAR 1996), pp. 75-86, 1996.

[21] N. Jain, G. Liao, and T. L. Willke. GraphBuilder: A Scalable

Graph ETL Framework. In First International Workshop on

Graph Data Management Experiences and Systems

(GRADES 2013), 2013.

[22] G. Karypis and V. Kumar. Parallel Multilevel k-way

Partitioning Scheme for Irregular Graphs. In Proceedings of

the 1996 ACM/IEEE conference on Supercomputing, 41(2),

pp. 278-300, 1999.

[23] K. Schloegel, G. Karypis, and V. Kumar. Parallel Multilevel

Algorithms for Multi-constraint Graph Partitioning. In

Proceedings of the 1998 ACM/IEEE conference on

Supercomputing (Euro-Par 2000), pp. 296-310, 2000.

[24] I. Stanton and G. Kliot. Streaming Graph Partitioning for

Large Distributed Graphs. In Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery

and data mining (KDD 2012), pp 1222-1230, 2012.

[25] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M.

Vojnovic. FENNEL: Streaming Graph Partitioning for

Massive Scale Graphs. In Proceedings of the 7th ACM

International Conference on Web Search and Data Mining

(WSDM 2014), pp.333-342, 2014.

[26] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a

Social Network or a News Media? In Proceedings of 19th

International World-Wide Web Conference (WWW 2010),

pp. 591-600, 2010.

[27] P. Boldi, B. Codenotti, M. Santini, and S. Vigna.

UbiCrawler: A Scalable Fully Distributed Web Crawler. In

Journal of Software: Practice and Experience, 34(8), pp.

711-726, 2004.

[28] H. Haselgrove. Wikipedia page-to-page link database.

http://haselgrove.id.au/wikipedia.htm, 2010.

[29] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A.

Panconesi, and P. Raghavan. On Compressing Social

Networks. In Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data

mining (KDD 2009), pp. 219-228, 2009.

288

PPoPP '18, February 24–28, 2018, Vienna, Austria L. Wang, L. Zhuang, J. Chen, H. Cui, F. Lv, Y. Liu, X. Feng

[30] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.

Community Structure in Large Networks: Natural Cluster

Sizes and the Absence of Large Well-Defined Clusters.

Internet Mathematics, 6(1), pp. 29-123, 2009.

[31] SNAP: Stanford Network Analysis Platform.

snap.stanford.edu/snap/index.html

[32] 9th DIMACS Implementation Challenge.

http://www.dis.uniroma1.it/challenge9/download.shtml.

[33] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced Graph

Edge Partition. In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data

mining (SIGKDD 2014), pp. 1456-1465, 2014.

[34] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin,

Y. Dai, and L. Zhou. Gram: Scaling Graph Computation to

the Trillions. In Proceedings of the Sixth ACM Symposium

on Cloud Computing (SOCC 2015), pp. 408-421, 2015.

[35] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M.

Verstraaten, and H. Chafi. Pgx.d: A Fast Distributed Graph

Processing Engine. In Proceedings of the International

Conference for High Performance Computing, Networking,

Storage and Analysis (SC‟15), 2015.

[36] A. Quamar, A. Deshpande, and J. Lin. Nscale:

Neighborhood-Centric Analytics on Large graphs. In

Proceedings of the VLDB Endowment, pp.1673-1676, 2014.

[37] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. Fast and

Concurrent RDF Queries with RDMA-Based Distributed

Graph Exploration. In Proceedings of 12th USENIX

Symposium on Operating Systems Design and

Implementation (OSDI 16), 2016.

[38] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.

Priebe, and A. S. Szalay. FlashGraph: Processing Billion-

Node Graphs on an Array of Commodity SSDs. In

Proceedings of 13th USENIX Conference on File and

Storage Technologies (FAST15), pp. 45-58, 2015.

[39] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F.

Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph: Taking

the Pulse of a Fast-Changing and Connected World. In

Proceedings of the 7th ACM European Conference on

Computer Systems (EuroSys 2012), pp. 85-98, 2012.

[40] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V.

Prabhakaran, W. Chen, and E. Chen. Chronos: A Graph

Engine for Temporal Graph Analysis. In Proceedings of the

Ninth European Conference on Computer Systems(EuroSys

2014), 2014.

[41] U. Khurana and A. Deshpande. Efficient Snapshot Retrieval

over Historical Graph Data. In Proceedings of 2013 IEEE

29th International Conference on Data Engineering (ICDE

2013), pp. 997-1008, 2013.

[42] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer.

LLAMA: Efficient Graph Analytics Using Large

Multiversioned Arrays. In Proceedings of IEEE 31st

International Conference on Data Engineering (ICDE 2015),

2015.

[43] M. Zhang, Y. Wu, K. Chen, X. Qian, X. Li, and W. Zheng.

Exploring the Hidden Dimension in Graph Processing. In

Proceedings of 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI16), 2016.

[44] J. Zhong, and B. He. Medusa: Simplified Graph Processing

on GPUs. In IEEE Transactions on Parallel and Distributed

Systems (TPDS 2013). 25(6), pp.1543-1552, 2013.

[45] J. Zhong, and B. He. Parallel Graph Processing on Graphics

Processors Made Easy. In Proceedings of the VLDB

Endowment (VLDB 2013), 2013.

[46] The laboratory for web algorithmic.

http://law.dsi.unimi.it/datasets.php.

[47] D. G. Murray, F. Mcsherry, R. Isaacs, M. Isard, P. Barham,

and M. Abadi. Naiad: A Timely Dataflow System. In

Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (SOSP 2013), 2013.

[48] R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and H. Guan.

Computation and Communication Efficient Graph

Processing with Distributed Immutable View. In

Proceedings of the 23rd international symposium on High-

performance parallel and distributed computing (HPDC

2014), 2014.

[49] S. Brin, and L. Page. The Anatomy of A Large-Scale

Hypertextual Web Search Engine. In Proceedings of Seventh

International World-Wide Web Conference (WWW 1998),

1998.

[50] Gonzalez J. E., Low Y., Guestrin C., and O‟HALLARON,

D. Distributed Parallel Inference on Large Factor Graphs. In

Proceedings of the Twenty-Fifth Conference on Uncertainty

in Artificial Intelligence (UAI 2009). pp. 203-212, 2009.

[51] M. Han, and K. Daudjee Giraph. Unchained: Barrierless

Asynchronous Parallel Execution in Pregel-like Graph

Processing Systems. In Proceedings of the VLDB

Endowment. 2015.

[52] X. Ju, H. Jamjoom, K. G. Shin. Hieroglyph: Locally-

Sufficient Graph Processing via Compute-Sync-Merg.

In Proceedings of the 2017 ACM SIGMETRICS /

International Conference on Measurement and Modeling of

Computer Systems, 2017.

[53] R. R. McCune, T. Weninger, and G. Madey. Thinking Like a

Vertex: a Survey of Vertex-Centric Frameworks for Large-

Scale Distributed Graph Processing. In ACM Computing

Surveys, 48(2), 2015.

[54] X. Shi, X. Luo, J. Liang, P. Zhao, S. Di, B. He, H. Jin. Frog:

Asynchronous Graph Processing on GPU with Hybrid

Coloring Model. In IEEE Transactions on Knowledge and

Data Engineering, 30 (1), pp 29-42, 2018.

[55] L. Wang, F. Yang, L. Zhuang, H. Cui, F. Lv, X. Feng.

Articulation Points Guided Redundancy Elimination for

Betweenness Centrality. In Proceedings of the 21st ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP 2016), 51(8), 2016.

[56] J. Zhao, H. Cui, J. Xue, X. Feng, Y. Yan, and W. Yang. An

Empirical Model for Predicting Cross-core Performance

Interference on Multicore Processors. In Proceedings of the

22nd International Conference on Parallel Architectures and

Compilation Techniques (PACT 2013), pp. 201-212, 2013.

289

View publication stats

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
https://www.researchgate.net/publication/322972484

