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Abstract 

Replicas
 1

 of a vertex play an important role in existing 

distributed graph processing systems which make a single 

vertex to be parallel processed by multiple machines and 

access remote neighbors locally without any remote access. 

However, replicas of vertices introduce data coherency 

problem. Existing distributed graph systems treat replicas 

of a vertex v as an atomic and indivisible vertex, and use an 

eager data coherency approach to guarantee replicas 

atomicity. In eager data coherency approach, any changes 

to vertex data must be immediately communicated to all 

replicas of v, thus leading to frequent global 

synchronizations and communications. 

In this paper, we propose a lazy data coherency 

approach, called LazyAsync, which treats replicas of a 

vertex as independent vertices and maintains the data 

coherency by computations, rather than communications in 

existing eager approach. Our approach automatically 

selects some data coherency points from the graph 

algorithm, and maintains all replicas to share the same 

global view only at such points, which means the replicas 

are enabled to maintain different local views between any 

two adjacent data coherency points. Based on PowerGraph, 

we develop a distributed graph processing system 

LazyGraph to implement the LazyAsync approach and 

exploit graph-aware optimizations. On a 48-node EC2-like 

cluster, LazyGraph outperforms PowerGraph on four 

widely used graph algorithms across a variety of real-world 

graphs, with a speedup ranging from 1.25x to 10.69x. 

CCS Concepts •Computing methodologies → 

Distributed programming languages; Parallel 

programming languages 

Keywords Lazy Data Coherency, Distributed Graph-
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1 Introduction 

Efficient processing of large-scale graphs has gain 

significant interest in both academia and industry recently. 

Due to the desire to process tremendous graphs, many 

graph processing systems have been proposed and been 

able to run on distributed machines [1-14].  

Replicas of vertices play an important role in existing 

distributed graph processing systems. When placing a 

graph-structured data across multiple machines, a single 

vertex is spanned to multiple machines. Thus, replicas v0, 

v1, …, vk of a vertex v make the single vertex v to be 

parallel processed by multiple machines, thus each vertex 

can access remote neighbors locally via the corresponding 

replicas without any remote access. Many graph 

partitioning algorithms [3,4,8,33,20-25] are proposed to 

minimize the communication cost through reducing the 

number of replicas.       

However, replicas of vertices introduce the data 

coherency problem. Existing distributed graph systems 

treat all the replicas v0, v1, …, vk of a vertex v as an atomic 

and indivisible vertex, and use an eager data coherency 

approach to guarantee the atomicity. In the eager data 

coherency approach, any changes to the vertex v must be 

immediately communicated to all of its replicas, thus the 

communication overhead is determined by the number of 

machines spanned by each vertex and the frequency of data 

synchronization for each vertex. The atomicity is strictly 

maintained no matter in asynchronous or synchronous 

engines. In particular, changes to vertex data are copied to 

all replicas of v as soon as possible in the asynchronous 

engine, while these changes are batch-processed in the 

synchronous engine. Therefore, the eager data coherency 

approach leads to frequent global synchronizations and 

communications between replicas of a vertex, and 

introduces significant overhead.   
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For most graph algorithms, the data coherency between 

replicas of a vertex can be delayed. Let us consider two 

scenarios. First, in some graph algorithms, such as k-core, 

breadth-first search and connected components, the 

solution of a vertex depends only on a subset of its 

neighbors. A replica can update its own vertex data 

according to its local messages and send new messages to 

its local neighbors. But in eager data coherency approach, a 

replica has to wait for all replicas to finish their message 

collection, thus introducing unnecessary waiting cost. 

Second, for algorithms such as PageRank [49] and loopy 

belief propagation [50], an iterative equation can be 

expressed as 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 ⨁𝑗→𝑖∈𝐸𝛥𝑗

(𝑡)
 , where i is an 

vertex id, t is an iterative count, +𝑜𝑝  and ⨁  represent 

operations, 𝑥𝑖
(𝑡)

 is vertex data of i at iteration t, 𝛥𝑗
(𝑡)

is a 

delta value (a change value) of vertex j at iteration t. The 

vertex-program receives messages 𝛥𝑗
(𝑡)

 of all in-neighbors, 

and then updates the new 𝑥𝑖
(𝑡+1)

 based on 𝑥𝑖
(𝑡)

, and sends 

Δ𝑖
(𝑡+1)

 to its out-neighbors. The solution of a vertex can 

incrementally change from the initial value, until a 

convergence condition is reached. So a replica can receive 

messages of multiple iterations from its local neighbors and 

then communicate to other replicas.        

In this paper, we propose a lazy data coherency 

approach, called LazyAsync, to asynchronously execute 

replicas of a vertex and reduce the number of global 

synchronization and network traffic. The key idea is that 

replicas of a vertex are treated as independent vertices, and 

the coherency between these replicas are maintained via 

calculation only at the data coherency points, which are 

automatically selected from the algorithm by our approach. 

LazyAsync works in the following steps. First, some edges 

are heuristically identified to be split into parallel-edges. In 

particular, an edge 𝑣 → 𝑢 is split into max(|V|,|U|) parallel-

edges, where V and U represent the replicas for v and u 

respectively. Second, the graph is being processed on all 

machines in the lazy mode between two adjacent coherency 

points. Specifically, each replica maintains a version of the 

vertex data and updates its vertex data using 𝑥𝑖
(𝑡+1)

=

𝑥𝑖
(𝑡)
+𝑜𝑝   ⨁𝑗→𝑖∈𝐸𝛥𝑗

(𝑡)
. During the processing, since V and U 

are located on the same machine, the message passing 

along the parallel-edges can be implemented as local write 

operations, without introducing any global 

synchronizations or communications. Finally, when the 

graph algorithm reaches the data coherency point, each 

machine collects the messages (delta) from all replicas, 

aggregates the messages (delta) together and updates the 

vertex data via some computations to obtain the global 

view. Note that for graph algorithms, the vertex data can be 

determined only by the initial value and the messages, in 

regardless of the order of these messages.        

Based on PowerGraph, we develop a distributed graph 

processing system LazyGraph to implement the LazyAsync 

approach. LazyGraph consists of two parts: First, for 

programmers, LazyGraph maintains the same programming 

interface of existing distributed graph processing systems, 

but it requires the programmers to write the graph 

algorithms into push-style vertex-programs and delta 

propagations. Second, LazyGraph runtime provides the 

underlying support for LazyAsync, including one-edge and 

parallel-edges message transmission modes, together with 

a mechanism to maintain the coherency of the replicas, by 

expressing the computation of v0, v1, …, vk distributed on 

different machines as a sequence of local computation 

stages and data coherency stages.    

This paper makes the following contributions:   

1) We propose a lazy data coherency approach LazyAsync 

for distributed graph processing. It automatically 

selects some data coherency points from the graph 

algorithm, and maintains the replicas to share the same 

global view only at such points, which means the 

replicas of a vertex are enabled to maintain different 

local views between any two adjacent data coherency 

points, and thus reduces the number of global 

synchronization and communication volume, and 

substantially accelerates the convergence of graph 

algorithms.      

2) We propose a parallel-edges message transmission 

mechanism, which converts a message transmission 

between replicas of two different vertices into multiple 

local write operations, to avoid remote messages and 

achieve rapid convergence on local computation.     

3) Based on PowerGraph, we develop a distributed graph 

processing system LazyGraph to implement LazyAsync 

approach and exploit the graph-aware optimizations. 

LazyGraph contains three graph-aware optimizations 

including graph partitioning to support one-edge and 

parallel-edges message transmission modes, adaptive 

interval strategy selection between two adjacent data 

coherency points, and dynamic switching between two 

communication modes at data coherency points, i.e., 

all-to-all and mirrors-to-master.    

4) Our experimental results show that on a 48-node EC2-

like cluster, LazyGraph outperforms PowerGraph on 

four widely used graph algorithms across a variety of 

real-world graphs, with a speedup ranging from 1.25x 

to 10.69x. 

2 Background and Motivation 

2.1 Vertex Computation and GAS Model 

Distributed graph processing systems, based on the “think 

like a vertex” programming model [53], iteratively execute 

a user-defined vertex-program over vertices of a graph. 

Most of these systems abstract the vertex computation into 

the Gather-Apply-Scatter (GAS) model [3]. The Gather 
and Sum function collect information about the neighbors 

of the vertex along in-edges, like a commutative associative 
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combiner. The result is used in the Apply function, which 

calculates and updates the vertex value. The Scatter 
function sends messages and activates neighbors along out-

edges.       

For example, Fig.1(a) shows k-core Decomposition (k-

core) algorithm pseudocode. A k-core of a graph is a 

maximal connected subgraph in which each vertex is 

connected to at least k vertices. K-core Decomposition is 

based on following iterative equations: 

 𝑜  𝑖
(𝑡+1)

=  𝑜  𝑖
(𝑡)
  ∑ 𝛥𝑗

(𝑡)

𝑗→𝑖 𝑜  𝑖→𝑗

 (1) 

𝛥𝑖
(𝑡+1)

=                         𝑜  𝑖
(𝑡+1)

    (2) 

Where t is the t iteration, corei is the value of vertex i, and 

Δi  is whether vertex i is deleted or not.  In Fig.1(a) an 

active vertex v receives messages from its neighbors by 

GatherMsg function, and combines these messages by Sum 

function. accum is the number of edges which v needs to 

delete and is returned by the GatherMsg function. In Apply 

function, v.core is updated by accum; if v.core is less than 

K, v is deleted. In Scatter function, if v is deleted, v sends 1 

to its neighbors. 

2.2 Replicas of Vertices 

In distributed processing, a graph is a whole graph from a 

user view and is a partitioned graph from system view. 

Replicas (mirror vertices): Replicas of vertices play an 

important role in existing distributed graph processing 

systems. When placing graph-structured data across 

multiple machines, existing distributed graph systems will 

generate a large number of replicas of vertices. For 

example, vertex-cut partitioning algorithms [3,5,8,20,21] 

evenly assign the edges of a graph to machines and allow 

the vertices to span machines, thus a single vertex can be 

parallelized by multiple machines and access remote 

neighbors locally without any remote access. Another 

example is edge-cut partitioning algorithms [1,2,4,6,22-25] 

which assign each machine a disjoint set of vertices and all 

the connected incoming/outcoming edges. Two vertices 

connected by each cut edge have two copies on both 

machines, thus vertices can access remote neighbors locally 

without any remote access. As vertex-cut partitioning 

achieves better load balance on power law graphs than 

edge-cut partitioning does, recent distributed graph systems 

[3,5,8,9] use vertex-cut to place graph-structured data 

across multiple machines. These systems will set up 

replicas of vertices to enable computation, and the 

automatic synchronization of these replicas requires 

communication.  

Replicas of vertices introduce three issues: the data 

coherency between replicas of a vertex, the message 

transmission between replicas of two different vertices, and 

the order of replicas computation. 

ISSUE Ⅰ (eager data coherency approach for 

replicas):  PowerGraph[3] and GraphX[5] represent two 

different implementations. Fig.2.(a)(b)  illustrate the 

physical graph representations and implement the eager 

data coherency approaches in PowerGraph and GraphX 

respectively. To guarantee atomic update of replicas, 

PowerGraph allows one of replicas (the master) maintain 

an actual vertex data and all remaining replicas (mirrors) 

maintain a local cached read only copy of the vertex data. 

Any change to the vertex data must be made to the master 

which is then immediately replicated to all mirrors. GraphX 

initData(v):  v.core = v.degree
initMsg:  Activate(v, v.degree), 

GatherMsg (v, msg): return msg;
Sum(a, b): return a+b;

Apply(v, accum):
  flag_delete = flase;
  if (v.core > 0){

v.core -= accum;
if (v.core < K){
   v.core = 0; flag_delete = true;

}}

Scatter(v, u):
 if (flag_delete == true){ 

if ( u.core > 0)    Activate (u, 1) 

}
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1 Local computation:
   40.core = 0,  40.deltaMsg = 4 ;        41.core = 5, 41.deltaMsg = 0;
   80.core = 4,  80.deltaMsg = 1 ;        81.core = 4, 81.deltaMsg = 1;
   180.core = 6,  180.deltaMsg = 5 ;    181.core = 8, 181.deltaMsg = 3;
   160.core = 0,  160.deltaMsg = 1 ;    161.core = 0, 161.deltaMsg = 1; 
1 Data coherency :
    40.core = 0,  40.msg = 0 ;                 41.core = 0, 41.msg = 4;
    80.core = 3,  80.msg = 1 ;                 81.core = 3, 81.msg = 1;
    180.core = 3,  180.msg = 3 ;             181.core = 3, 181.msg = 5;
    160.core = 0,  160.msg = 1 ;             161.core = 0, 161.msg = 1; 

 

(a) Pseudocode for k-core          (b) 3-core decomposition using Sync         (c) 3-core decomposition using LazyAsync  

Figure 1.  Illustration of the difference between eager/lazy data coherency for replicas 
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[5] is an embedded graph processing framework built on 

top of Spark general dataflow framework. The automatic 

data coherency of these replicas is analogous to the cache 

coherency in shared memory multi-processors system. 

GraphX allows vertex collection to maintain actual vertex 

data and all replicas to maintain a local cached read only 

copy of the vertex data. When the eager data coherency 

approach implements the Gather-Apply-Scatter model, 

each phase has a global sync, each mirror sends one 

accumulator to the master in gather phase, and the master 

sends the updated vertex data to all mirrors in apply phase. 

The approach needs two communications and three 

synchronizations to update vertex data.  

ISSUE Ⅱ (the message transmission between replicas 

of two different vertices):  When v sends a message msg to 

u along an edge 𝑣 → 𝑢 , the systems need two 

communications and three synchronizations to complete 

this sending action. On a user view graph, v sends a 

message to u along an edge 𝑣 → 𝑢. Now on a partitioned 

graph, this message transmission becomes that replicas (v0, 

v1, …, vk) send a message to replicas (u0, u1, …, up) on the 

partitioned graph. Existing distributed graph processing 

system uses a one-edge message transmission mode: 

assuming the edge 𝑣 → 𝑢 assigned to machine i, vi collects 

messages from v0, v1, …, vk across the network, and sends 

these messages to uj along the local edge vi->uj, and then uj 

sends these messages to u0, u1, …, up across the network. 

This edge vi->uj becomes the bottleneck. 
ISSUE Ⅲ (Sync and Async engines): A synchronous 

engine (Sync) and an asynchronous engine (Async) [2,3] 

provide different visibility timing of updated vertex data for 

neighbor vertices, but both engines use the eager data 

coherency approach to synchronize replicas of an active 

vertex, and use the one-edge message transmission mode. 

The major difference between Sync and Async modes is 

the order of vertices computation, which provides different 

visibility timing of updated vertex data for subsequent 

vertex computation. Changes to vertex data are copied to 

all replicas of v as soon as possible in Async engine, but 

these changes are batch processed in Sync engine. 

2.3 Redundancy 

The eager data coherency approach for replicas of a vertex 

introduces considerable redundancies. We use k-core 

Decomposition algorithm to illustrate this problem. For 

example, in Fig.1(b), the vertex-cut partitioning places a 

small graph (25 vertexes and 41 edges) on two machines, 

and let vertex 4, 8, 16, and 18 to span machines. When 3-

core decomposition uses Sync engine, after 6 iterations 

with 12 communications and 18 global synchronizations, 

vertex 3, 8, 10, 18 are found to connect a 3-core subgraph. 

There are redundant synchronizations and communications. 

a) Redundant waiting. The local messages of 40 are 

enough to get the solution, but 40 has to wait the remote 

messages of 41. Similarly, the local messages of 60 are 

enough to get the solution, but 60 has to wait the remote 

messages of 61. b) Frequent global synchronization and 

communication. For vertex 18, there are 15 

synchronizations and 10 communications between 180 and 

181. v.core of 18 is updated to 9, 7, 6, 4, 3 from iteration 

2~6 respectively. c) Redundant synchronizations. Local 

vertices do not need to wait remote local vertices to 

complete their calculations, e.g. vertex 2, 9, 11, 12, 23, 24 

on machine 0 do not need to wait vertex 0,13, 20, 22 on 

machine 1 to complete their calculations at the first 

iteration. Although the asynchronous engine can eliminate 

the third redundancy, it cannot solve the first and the 

second redundancy.  

2.4 Our approach 

In this paper, we focus on leveraging the lazy data 

coherency for replicas of a vertex to reduce the number of 

global synchronizations and network traffic. We treat 

replicas v0, v1, …, vk of a vertex v as independent vertices, 

with each replica maintains a version of the vertex data and 

updates its vertex data by 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝  ⨁𝑗→𝑖∈𝐸𝛥𝑗

(𝑡)
 

iteration equation. Although replicas of v receive messages 

in different order, they can obtain the same value as long as 

they have the same initial value and receive the same 

messages. LazyGraph expresses the computation of 

replicas v0, v1, …, vk as a sequence of local computation 

stages and data coherency stages, and maintains the 

coherency between these replicas via calculation, which 

merge local values and remote delta messages, only at the 

data coherency points. Thus LazyAsync allows replicas of a 

vertex to maintain different local views of the vertex 
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between any two adjacent data coherency points and share 

the same global view only at a data coherency point. 

For example, when 3-core decomposition uses 

LazyAsync in Fig.1(c), there is only one communication 

and one synchronization. In LazyAsync 180 and 181 are 

independent vertices. In the beginning, 180.core = 11 and 

180.deltaMsg = 0, and 181.core = 11 and 181.deltaMsg = 0. 

After the first local computation stage, 180.core = 6 and 

180.deltaMsg = 5, and 181.core = 8 and 181.deltaMsg = 3. 

And then at the first data coherency stage, replicas update 

their local value by remote delta messages, that is 

180.core=6–3=3 and 181.core=8 – 5=3. 

3 Lazy Data Coherency Approach 

To address the challenges of the eager data coherency for 

replicas of a vertex, we introduce the lazy data coherency 

approach, called LazyAsync. 

1) It automatically selects some data coherency points 

from the graph algorithm, and maintains the replicas to 

share the same global view only at such points, which 

means the replicas of a vertex are enabled to maintain 

different local views between any two adjacent data 

coherency points.  (Section 3.2).      

2) It supports two message transmission modes (one-edge 

and parallel-edges) at the same time, but an edge of a 

graph only uses one of the two modes, different edges 

can use different modes. Thus this approach can 

benefit from the two modes, one-edge transmission 

mode to save memory, and parallel-edges mode to 

save transmission cost and achieves rapid convergence 

on local computation (Section 3.3).      

3) It uses a vertex-cut and edge-split graph partitioning, 

which uses a vertex-cut partitioning to place graph-

structured data across multiple machines, and then 

splits some edges into parallel edges and assigns these 

parallel edges to each machine (Section 4.1).     

4) It provides LazyBlockAsync and LazyVertexAsync 

engines to schedule the order of vertex computation 

and to provide different visibility timing of updated 

vertex data for subsequent vertex computation (Section 

3.4). 

3.1 Vertex Computation and Applications 

LazyAsync maintains the same programming interface of 

existing distributed graph processing systems, but it 

requires the programmers to write the graph algorithms into 

push-style vertex-programs and delta propagations. Like 

existing distributed graph processing systems, a user-

defined vertex-program P in LazyAsync runs on a directed 

graph G = {V, E} and computes in parallel on each vertex 

𝑣 ∈ V. Vertices communicate directly with each other by 

sending messages. A vertex can receive messages sent to it, 

modify its data, and send messages to other vertices. An 

edge is used to transmit messages. These actions are 

expressed by the GatherMsg, Sum, Inverse, Apply and 
Scatter functions of a vertex-program P. LazyAsync still 

conforms to the GAS model. 

Unlike existing distributed graph processing systems, 

LazyAsync requires the vertex computation to be based on 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝  ⨁𝑗→𝑖∈𝐸𝛥𝑗

(𝑡)
iterative equation, where i is 

an vertex id, t is an iterative count, +𝑜𝑝  and ⨁ represent 

operations, 𝛥𝑗
(𝑡)

is a delta value (a change value) of vertex j 

at iteration t. The user defined Sum ⨁ operation must be 

commutative and associative. In gather messages phase, a 

vertex i receives messages Δ𝑗
(𝑡)

 sent to it and uses the Sum 

⨁ operation to combine these messages to accum. accum is 

used in apply phase to update the value of the central vertex 

using  𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 𝑎  𝑢𝑚 . Finally, in Scatter phase 

the new change (delta) 𝛥𝑖
(𝑡+1)

 is sent to its neighbors along 

adjacent edges. 

In Fig.3 we implement PageRank using the LazyGraph 

abstraction. For Single Source Shortest Path algorithms 

(SSSP), Connected Components (CC) and k-Core, 

LazyAsync and PowerGraph have the same codes. But for 

PageRank, LazyAsync uses a variant of PageRank 

(PageRank-Delta). PageRank is widely used to evaluate the 

relative importance of webpages; the rank of webpages is 

based on Equation (3). 

  ( ) =    5 +    5 ∑
  ( )

o   e  ( )
𝑗→𝑖∈𝐸

 (3) 

Here we use PageRank-Delta in which   𝑖
(0)

 and   𝑖
(1)

 are 

initial values, and   𝑖
(𝑡+1)

applies the iterative Equation (4). 

  𝑖
(𝑡+1)

=   𝑖
(𝑡)
+    5 ∑

  𝑗
(𝑡)
   𝑗

(𝑡 1)

o   e  ( )
𝑗→𝑖∈𝐸

 (4) 

In PageRank-Delta, the GatherMsg and Sum functions 

receive the total delta contributions from neighbours, the 

initData(v):  v.rank = 0.15;    Δ = -0.85; 
initMsg:  Activate(u, 1/v.outDegree), v->u ∈ E 

GatherMsg(v, msg): return msg; 
Sum(a, b): return a+b 
Inverse(accum, a): return accum-a; 
 
Apply(v, accum): 
  Δ= 0.85 * accum;  
  v.rank += Δ;  
  Δ +=   Δ;  
  if( Δ   o  ) {   Δ= 0.0; } 
  else {   Δ = Δ;} 

Scatter(v, u) 
  if( Δ   o  ) 
    Activate(u, Δ/v.outDegree) 

Figure 3. Pseudocode for PageRank 
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Apply function computes the new PR value and 

accumulates the delta value, the Scatter function sends the 

change (delta) in PR value to neighbours if it has 

accumulated enough change (delta) in its PR value. In our 

implementation, each vertex is initialized to   𝑖
(𝑖𝑛𝑖𝑡)

=    5 

and 𝛥𝑖
(𝑖𝑛𝑖𝑡)

=     5 , and each edge is initialized to 

𝑚𝑠𝑔𝑗→𝑖∈𝐸
(𝑖𝑛𝑖𝑡)

=
1

outDeg (𝑗)
. And then after the first iteration, we 

can obtain   𝑖
(1)
=    5 +    5∑

1

outDeg (𝑗)𝑗→𝑖∈𝐸  and 𝛥𝑖
(1)
=

  𝑖
(1)
   𝑖

(0)
=     5 +    5∑

1

outDeg(𝑗)𝑗→𝑖∈𝐸  . 

3.2 Lazy Data Coherency for Replicas 

In LazyAsync, a user-defined vertex-program P runs on a 

directed graph G = {V, E} in user view, but it actually runs 

on a partitioned graph G in runtime system. When 

LazyAsync places graph G across multiple machines, it 

splits a vertex into multiple replicas distributed on different 

machines. The runtime system will translate the API 

functions of a user-defined vertex-program P into low level 

graph operators, and use LazyAsync to asynchronously 

parallelize the computation of a single vertex. 

We now show how to use the lazy data coherency for 

replicas to asynchronously parallelize the computation of a 

single vertex. LazyAsync redefine how to calculate the 

vertex data of replicas v0, v1, …, vk in the runtime system 

and express the computation of replicas v0, v1, …, vk 

distributed on different machines as a sequence of local 

computation stages and data coherency stages (shown in 

Fig.4). In the local computation stage, replicas of a vertex 

maintain different local views of this vertex, and update 

their local views with received messages from local 

neighbors on the same machine; the new local views can be 

visible to local neighbors immediately without waiting a 

data coherency point; and replicas accumulate delta 

messages received from local neighbors along the one-edge 

transmission mode during a local computation stage. In the 

data coherency stage, each replica sends its delta message 

to the other remote replicas across the network and receives 

delta messages of all the other remote replicas; and then 

replicas run the apply operator on their local views with 

others delta messages as parameter, and thus obtain the 

same global view. 

For each replica v on each machine, the runtime system 

main-tains a number of variables: 

 vdata[v],  the local vertex data 

 message[v],  the message sent to v from its neighbors  

 deltaMsg[v],  the delta message accumulating all 

messages which v receives from local neighbors along 

the one-edge transmission mode during a local 

computation stage  

 replicas[v],  the machines on which the replicas of v are 

placed    

 isActive[v],  a state identifying v active or inactive  

The runtime system translates the API functions of a 

user-defined vertex-program into a number of low level 

graph operators, and uses LazyAsync to asynchronously 

parallelize the computation of a single vertex. 

 Init(v),  this operator uses the user initData and initMsg 

functions to initialize vertices and messages    

 Apply(v, message[v]),  this operator uses the user Apply 

function to update vdata[v], and then clear message[v]  

 ScatterGatherMsg(v, u),  when v sends a message msg 

to local neighbor u along a local edge, this operator 

directly writes this message msg into message[u] using 

the user Scatte, GatherMsg and Sum functions. If the 

edge uses one-edge transmission mode, this message 

msg is accumulated into deltaMsg[u]; if the edge uses 

parallel-edge transmission mode, msg isn‟t 

accumulated into deltaMsg[u]. Finally, this operator 

sets u to active and sets v to inactive.     

 Exchange_deltaMsg(v, deltaMsg[v]),  this operator has 

all-to-all and mirrors-to-master communication modes 

(shown in Fig.5), and allows dynamically switching 

between the two modes to gain optimal performance. In 

all-to-all mode (shown in Fig.5(a)), a replica v sends its 

deltaMsg[v] to the other remote replicas of this vertex 

across the network, and receives delta messages of all 

the other remote replicas; accumulates other delta 

messages into message[v] using the user Sum function, 
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and clears deltaMsg[v]. In mirrors-to-master mode 

(shown in Fig.5(b)), all mirrors send their deltaMsg to 

master across the network, and then master combines 

all delta messages using the Sum function and sends the 

new delta message to all mirrors; each replica subtracts 

its deltaMsg[v] from the new delta message using the 

Inverse function, accumulate the new delta message 

into message[v] by using the Sum function, and clear 

deltaMsg[v]. 

3.3 Two Message Transmission Modes 

LazyAsync supports two message transmission modes, 

message transmission along an edge or along parallel-edges 

of an edge. When v sends messages to u, if the edge 𝑣 → 𝑢 

uses one-edge mode, these messages will reach replicas of 

u by the data coherency between replicas of u; if the edge 

𝑣 → 𝑢 uses parallel-edges mode, these messages will reach 

replicas of u along the local edge 𝑣 → 𝑢. Specifically, in 

the one-edge transmission mode (shown in Fig.6(a)), an 

edge 𝑣 → 𝑢 is assigned to a machine and connects a pair of 

replica vi and replica uj. When replicas of v send messages 

to all replicas of u, firstly each replica v sends its delta 

message to the other remote replicas across the network, 

and all replicas of v obtain the same global view through 

the data coherency; and then replica vi sends a message to 

replica uj along the edge v->u; finally uj sends this delta 

message to all other replicas of u at the data coherency 

stage. In the parallel-edges transmission mode (shown in 

Fig.6(b)), an edge v->u is split into multiple parallel-edges, 

and each parallel-edges connects each pair of replica vi and 

replica ui. When replicas of v send messages to all replicas 

of u, firstly each replica v sends its delta message to other 

remote replicas across the network, and all replicas of v 

obtain the same global view through the data coherency; 

and then each replica v send a message to each replica u 

along a local edge of parallel-edges. There is no the data 

coherency among replicas of u, because messages from all 

replicas of v arrive each replica u via the local edge of 

parallel-edges. The parallel-edges mode is only suitable for 

the edge with read-only values. 

Fig.6 shows the two message transmission modes, in a 

user view, a vertex v receives messages msg0 and msg1, 

updates its data, and then sends a message to its neighbor u 

along an edge v->u. Fig.6(a) is a one-edge mode, an edge v-

>u is assigned to machine 0, a replica of v (v0) receives 

msg0, another replica v1 receives msg1. Propagating msg0 

to u needs two stages, and propagating msg1 to u needs 

four stages. Fig.6(b) is a parallel-edges mode, the parallel-

edges of an edge v->u are assigned on two machines, v0 

receives msg0, v1 receives msg1. Propagating msg0 or 

msg1 to u needs three stages. In the parallel-edges mode, 

edges are not the bottleneck, and messages can be sent to 

neighbours as soon as possible. 

Our distributed graph system supports the two message 

transmission modes at the same time, but an edge of a 

graph only uses one of the two modes, different edges can 

use different modes. Some edges of a vertex u may use the 

one-edge transmission mode, and some other edges may 

use the parallel-edges mode (shown in Fig.7(b)). 

How does this vertex u maintain the data coherency of 

replicas? When a replica ui receives a message from its 

neighbors along a local edge, if this local edge is the one-

edge transmission mode, this message is accumulated into 

the delta message of ui; otherwise this message isn‟t 

accumulated into the delta message of ui. Thus at the data  
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coherency stage, only messages from the one-edge 

transmission mode are exchanged, and each replica u 

updates its data. 

 Fig.7 shows message transmission path on the two 

transmission modes. In Fig.7(a) an edge v->u is the one-

edge transmission mode and is assigned in machine 1. v is 

split into multiple replicas v0, v1, and v2 in machine 0, 1 

and 2. u is split into multiple replicas u1, u2, and u3 in 

machine 1, 2 and 3. Messages received by v0 and v2 are 

sent to v1, and then reach u1 along the edge v->u, and 

finally are sent to u2 and u3 by u1. In Fig.7(b) an edge v->u 

uses parallel-edges transmission mode and an edge w->u 

uses one-edge transmission mode. The edge v->u must be 

assigned to all the machines replicas of u stored on.  

Messages received by v0, v1 and v2 are sent to v1, v2 and 

v3, and then reach u1, u2, and u3 along parallel-edges v1-

>u1, v2->u2 and v3->u3, respectively. Message msg3 

received by w3 reaches u3 along the edge w->u and then 

are sent to u1 and u2. 

3.4 LazyBlockAsync and LazyVertexAsync Engines 

LazyAsync provides LazyBlockAsync and LazyVertexAsync 

engines to schedule the order of vertex computation and to 

provide different visibility timing of updated vertex data for 

subsequent vertex computation. Algorithm 1 shows the 

LazyBlockAsync engine. All the vertices enter local 

computation stage and data coherency stage at the same 

time, and a global barrier to synchronize vertex execution 

follows the delta messages exchanges in the data coherency 

stage. It is possible for batched data update and well-

optimized network message dispatching with high resource 

utilization. Algorithm 2 shows the LazyVertexAsync engine, 

which has no global barrier to synchronize vertex execution, 

and the updated vertex global view is visible to neighboring 

vertices as soon as possible. The LazyVertexAsync engine 

emphasizes the fast convergence speed, and hides the 

network latency by pipeline of vertex processing. 

3.5 Correctness 

In this section, we state the main correctness results of the 

lazy data coherency approach LazyAsync. 

PROOF.  Firstly, given the initial values 𝑥𝑖
(0)

and 𝑥𝑖
(1)

, the 

new value 𝑥𝑖 of the vertex i applies the iterative equation 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝  ⨁𝑗→𝑖∈𝐸Δ𝑗

(𝑡)
. Since the sum ⨁ operation 

defined by the user must be commutative and associative, 

the value acc m =  ⨁𝑗→𝑖∈𝐸Δ𝑗
(𝑡)

 is independent of the 

sequence of messages Δ𝑗
(𝑡)

 along an edge  →  . 

The iterative equation can be expressed as in 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)
+𝑜𝑝 Δ𝑗1

(𝑡)
 +𝑜𝑝Δ𝑗2

(𝑡)
+𝑜𝑝   +𝑜𝑝Δ𝑗𝑘

(𝑡)
           1 𝑘 →  ∈   

and the new value 𝑥𝑖
(𝑡+1)

 is also independent of the 

sequence of messages Δ𝑗1 𝑘
(𝑡)

. 

And then the iterative equation can be expanded into 

multiple iterations as in: 

𝑥𝑖
(𝑡+1)

=  (𝑥𝑖
(𝑡 1)

+𝑜𝑝 ⨁𝑗→𝑖∈𝐸Δ𝑗
(𝑡 1)

)+𝑜𝑝 ⨁𝑗→𝑖∈𝐸Δ𝑗
(𝑡)

 

= 𝑥𝑖
(𝑡 1)

+𝑜𝑝 Δ𝑗1
(𝑡 1)

 +𝑜𝑝   +𝑜𝑝Δ𝑗𝑘
(𝑡 1)

+𝑜𝑝 Δ𝑗1
(𝑡)
 +𝑜𝑝   +𝑜𝑝Δ𝑗𝑘

(𝑡)
 

= 𝑥𝑖
(1)
+𝑜𝑝⨁𝑗→𝑖∈𝐸⨁

𝑖𝑡𝑒 ∈1~𝑡Δ𝑗
(𝑖𝑡𝑒 )

;    1 𝑘 →  ∈   

and the new value 𝑥𝑖
(𝑡+1)

 is obtained by 𝑥𝑖
(1)

 accumulating 

these delta messages Δ𝑗1 𝑘
(𝑡1 𝑡), and is also independent of the 

Algorithm 1. LazyBlockAsync Engine 

Input: G(V, E, D) 
Input: Initial active vertex set activeCurr 
1. while(iteration <= max_iteration) { 
2.  
3. Stage1: local computation stage 
4.     if(doLocal){ 
5.         parallel_for( acitveCurr ){   
6.             if (activeCurr == NULL || !doLC())  break; 
7.             Applys(); 
8.             ScatterGatherMsgs(); 
9.             activeCurr = activeNext; activeNext = NULL;       
10.     }} 
11.  
12. Stage2: data coherency stage 
13.     Exchange_deltaMsgs(); 
14.     barrier(); 
15.     if(msgEmpty() && activeEmpty())    break; 
16.     if(!doLocal && turnOnLazy() )  
17.         doLocal = 1; 
18.     // data coherency point 
19.     parallel_for( acitveCurr ){ 
20.         Applys(); 
21.         ScattersGatherMsgs(); 
22.         acitveCurr = NULL; 
23.     } 
24.  
25.     activeCurr = activeNext; activeNext = NULL; 
26.     iteration ++; 
27.  }  

Algorithm 2. LazyVertexAsync Engine 

Input: G(V, E, D) 
Input: Initial active vertex set activeCurr 
1. while(!activeVEmpty()) { 
2.     v = dequeue(acitveCurr); 
3.     if (!needDataCoherency(v)) { 
4. Stage1: local computation stage 
5.         Applys(); 
6.         ScatterGatherMsgs(); 
7.         enqueue(activeCurr);     
8.     } else { 
9. Stage2: data coherency stage 
10.         Exchange_deltaMsgs();  
11.         // data coherency point 
12.         Applys(); 
13.         ScattersGatherMsgs(); 
14.         enqueue(activeCurr); 
15.      } 

16.  } 
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sequence of these delta messages. 

Secondly, assuming 𝑥𝑖 is split into three replicas 𝑥𝑖1, 𝑥𝑖2 

and 𝑥𝑖3 , the edges  1 𝑘 →   are equally assigned to each 

replica of 𝑥𝑖, e.g. the edges  1 𝑝 →  1, the edges  𝑝+1 𝑙 →

 2, and the edges  𝑙+1 𝑘 →  3. These edges use one-edge 

mode. The three replicas respectively apply these iterative 

equations as in: 

𝑥𝑖1
(𝑡+1)

= 𝑥𝑖1
(𝑡)
+𝑜𝑝 ⨁𝑙𝑜𝑐𝑎𝑙 𝑗1 𝑝→𝑖1Δ𝑗

(𝑡)
+𝑜𝑝  ⨁ 𝑒𝑚𝑜𝑡𝑒 𝑗𝑝+1 𝑘→𝑖2,3Δ𝑗

(𝑡)
 

𝑥𝑖2
(𝑡+1)

= 𝑥𝑖2
(𝑡)
+𝑜𝑝 ⨁𝑙𝑜𝑐𝑎𝑙 𝑗𝑝+1 𝑙→𝑖2Δ𝑗

(𝑡)
+𝑜𝑝  ⨁ 𝑒𝑚𝑜𝑡𝑒 𝑗1 𝑝,𝑙+1 𝑘→𝑖1,3Δ𝑗

(𝑡)
 

𝑥𝑖3
(𝑡+1)

= 𝑥𝑖3
(𝑡)
+𝑜𝑝 ⨁𝑙𝑜𝑐𝑎𝑙 𝑗𝑙+1 𝑝→𝑖3Δ𝑗

(𝑡)
 +𝑜𝑝  ⨁ 𝑒𝑚𝑜𝑡𝑒 𝑗1 𝑙→𝑖2,3Δ𝑗

(𝑡)
 

And then the three replicas respectively apply these 

iterative equations as in: 

𝑥𝑖1,2,3
(𝑡+1)

= 𝑥𝑖11,2,3
(1)

+𝑜𝑝⨁𝑗→𝑖∈𝐸⨁
𝑖𝑡𝑒 ∈1~𝑡Δ𝑗

(𝑖𝑡𝑒 )
;    1 𝑘 →  ∈   

As they have the same initial value 𝑥𝑖
(0)

and 𝑥𝑖
(1)

 and receive 

the same delta messages, they can obtain the same value 

after the apply operation at data coherency stage. 

Thirdly, assume the edges  1 →   use parallel-edge mode, 

each replica of 𝑥𝑖  has this edge. And thus Δ𝑗1
(𝑡)

 is local 

messages for 𝑥𝑖1 , 𝑥𝑖2  and 𝑥𝑖3 , and isn‟t sent to remote 

replicas. 

Now, we can conclude that the eager data coherency for 

replicas of a vertex is equal to the lazy data coherency for 

replicas.                                                                              □ 

4 The LazyGraph System 

In this section, we build a distributed graph processing 

system, called LazyGraph, to implement the LazyAsync 

execution approach. LazyGraph extends PowerGraph 

system to support LazyAsync engine and exploits the graph-

aware optimizations to gain high performance. LazyGraph 

has implemented LazyBlockAsync engine based on the 

Sync engine, and will implement LazyVertexAsync engine 

based on the Async engine in the future. 

4.1 Graph Loading and Partitioning 

In LazyGraph, each machine starts from loading a separate 

subset of the graph. The graph partitioning in LazyGraph 

consists of a vertex-cut partitioning algorithm and an edge 

splitter. After loading, the vertex-cut partitioning places the 

graph structure and data across multiple machines by 

evenly assigning edges to machines and allowing vertices 

to span machines. The vertex-cut partitioning algorithm can 

be one of random-cut, coordinated-cut, grid-cut and hybrid-

cut. Then the edge splitter selects some edges to be 

parallel-edges and dispatches these parallel edges to where 

they should be. 

The edge splitter has three key elements. 1) Parallel-

edges selecting criterion. An edge connecting two high-

degree vertices or an edge with low-out-degree source and 

low-degree target will be split into parallel-edges. The 

former helps rapid convergence of the local computation, 

and the latter saves transmission cost. 2) The number of 

parallel-edges PEhigh and PElow comes from the solution of 

the equations, [PEhigh*(P - 1) + PElow*(P/3)] / P = TEPS * 

textra and  PElow = PEhigh * 550, where PEhigh is the number 

of high-degree parallel-edges, PElow is the number of low-

degree parallel-edges, P is the number of machines, TEPS 

is a „traversed edges per second‟ rate and represents a 

machine performance, textra is an extra execution time 

introduced by parallel-edges and set by a user. The edge 

splitter determines the proportion of parallel-edges 

according to textra. 3) Dispatching parallel-edges follows the 

rule, that in the final distributed graph parallel-edges v->u 

must appear on all the machines replicas of u stored for 

unidirectional algorithms, or on all the machines all 

replicas of v and u stored for bidirectional algorithms. The 

edge splitter dispatches each parallel-edges v->u, until all 

parallel-edges don‟t violate this rule. 

4.2 Graph-Aware LazyBlockAsync Engine 

LazyGraph implements the LazyBlockAsync execution 

model defined in Section 3.4 and exploits graph-aware 

optimizations to gain high performance. 

4.2.1 Adaptive Interval Between Two Adjacent Data 

Coherency Points 

How long the data coherency for replicas should be delayed? 

To answer this question, a challenge faced by LazyGraph is 

input and algorithm sensitivity, where the best interval 

strategy may vary with different input sets and different 

algorithms. We adopt a machine learning technique to build 

an input-behavior-interval model, which predicts an 

optimal interval for an arbitrary input and algorithm. 

The input-behavior-interval model includes two 

components, “is it a good time to turn on lazy mode?” and 

“how long does the local computation stage execute?” The 

first component is a classification problem, classifying the 

running status whether or not to turn on the lazy mode 

(turnOnLazy() function in Line 16 of Algorithm 1). We 

select decision trees method to learn the classification, and 

select the following features to train the model: 

1) Locality of an input graph. We use E/V ratio and the 

replication factor λ  (which is the average number of 

replicas for a vertex) to express the locality of a graph. 

  
(a)Interval strategy on SSSP     (b) communication modes 

Figure 8.  Graph-aware Optimizations 
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Table 1 shows λ  of real-world graphs using 

coordinated-cut on 48 partitions. λ, from small to large, 

is road graphs, web graphs and social graphs. 

2) Characteristic of a graph algorithm. Many graph 

algorithms proceed iteratively, updating the graph data 

in rounds until a fixpoint is reached. The number of 

active vertices, 𝑣 𝑛𝑡𝑡 , is different on each iteration. 

We use a changing trend of the number of active 

vertices to describe the algorithm characteristic, 

 rend =( cn t-1- cn t)/ cn t-1. We count the number 

of active vertices 𝑣 𝑛𝑡𝑡 at each data coherency stage, if 

the trend is negative, the graph algorithm is in the 

ascent part; otherwise, in the descent part.   

3) We set the first iteration without the local computation 

stage. After achieving 𝑥𝑖
(1)

 and 𝛥𝑖
(1)

 based on 𝑥𝑖
(0)

 at 

the first data coherency stage, LazyGraph begins 

executing a sequence of the two stages. 

The second component of the input-behavior-interval 

model is how long does the local computation stage 

execute? The execution time of this stage should not be a 

fixed length.  We collect the execution time T of the first 

iteration at each local computation stage online, and set 

execution time of this stage no more than x*T (doLC() 

function in Line 6 of Algorithm 1). 

After training, the first component of the input-behavior-

interval model is that the lazy mode is turned on when the 

controlling condition (E/V <= 10 || (trend >= 0.07)) is 

satisfied. And the second component is set as 3T. The 

input-behavior-interval model means that if the locality of a 

graph is poor, the ascent part should synchronize frequently 

between replicas, and the descent part should synchronize 

rarely between replicas; but if the locali  ty is good, both 

ascent and descent parts should synchronize rarely between 

replicas. 

In Fig.8(a) we compare the performance of the adaptive 

interval strategy against a simple strategy, where the lazy 

mode always turns on and each local computation stage 

executes to convergence. The adaptive interval strategy 

does help LazyGraph gain high performance. 

4.2.2 Communication Modes Switch 

LazyGraph can dynamically switch between all-to-all and 

mirrors-to-master communication modes when exchanging 

delta messages at data coherency stage. All-to-all mode is 

appropriate for a small amount of communication traffic, 

and mirrors-to-master mode is appropriate for a large 

amount of traffic. After experiments (shown in Fig.8(b)), 

we observe that the communication time and the amount of 

traffic have a linear relationship for all-to-all mode, 

 a2a=    29comma2a+    4   and a polynomial 

relationship for mirrors-to-master mode 

 m2m=-6*  -7*commm2m
2 +    45*commm2m+    3. 

At data coherency stage, we use the following equations 

to calculate the communication volume as in: 

 𝑜𝑚𝑚𝑎2𝑎 =∑  𝑣
ℎ𝑎𝑠𝐷𝑒𝑙𝑡𝑎𝑀𝑠𝑔

∗ ( 𝑁𝑢𝑚𝑣   ) ∗ 𝑠 𝑧 𝑜 (𝐷 𝑙𝑡𝑎𝑀𝑠𝑔)
𝑣∈𝑉

 

 𝑜𝑚𝑚𝑚2𝑚 =∑ ( 𝑣
ℎ𝑎𝑠𝐷𝑒𝑙𝑡𝑎𝑀𝑠𝑔

+  𝑁𝑢𝑚𝑣  2) ∗ 𝑠 𝑧 𝑜 (𝐷 𝑙𝑡𝑎𝑀𝑠𝑔)
𝑣∈𝑉

 

where  𝑣
ℎ𝑎𝑠𝐷𝑒𝑙𝑡𝑎𝑀𝑠𝑔

 is the number of v‟s replicas having 

deltaMsg,  𝑁𝑢𝑚𝑣 is the number of v‟s replicas. And then we 

use two equations to estimate the communication times of 

all-to-all and mirrors-to-master modes, and select the faster 

one. 

5 Evaluation 

In this section, we compared the performance of the 

LazyGraph against Sync and Async of PowerGraph on a 

48-node EC2-like cluster. 

5.1 Experimental Methodology 

We compare LazyGraph with the lazyBlockAsync engine 

against PowerGraph with Sync and Async engines, and 

report the average results of three runs for each experiment. 

The compiler used is GCC 4.8.1. All experiments are 

performed on a 48-node EC2-like cluster. Each node has 8 

Intel Xeon cores, 32 GB of memory, and connected via 1 

GigE Ethernet. We use coordinated vertex-cut partitioning 

algorithm to evaluate LazyAsync, Sync and Async. 

Table 1 summarizes the large graphs used in our 

experiments.  These real-world graphs were taken from the 

Stanford Large Network Dataset Collection [31], the 

Laboratory for Web Algorithmic [46], and the DIMACS 

shortest paths challenge [32]. 

5.2 Performance 

Fig.9 shows the overall speedup of LazyGraph and 

PowerGraph Sync for the four algorithms with different 

real-world graphs on 48 machines. LazyGraph outperforms 

PowerGraph Sync on all four algorithms: the speedups 

range from 1.25x to 10.69x across a variety of real-world 

graphs over PowerGraph, with an average speedup of 3.95x 

on k-Core, 3.1x on PageRank, 4.57x on SSSP and 3.91x on 

CC. A performance comparison between LazyGraph and 

PowerGraph Async is shown in Section 5.4. 

The largest improvements are on the road graph, the 

smallest improvements are on the twitter graph, but for 

other graphs, the improvements are different on the four 

algorithms. For example, for UK-2005, compared with the 

PowerGraph Sync, LazyGraph achieves the speedups of 

3.48x on SSSP and 1.49x on CC. But for com-youtube, 

compared with PowerGraph Sync, LazyGraph achieves the 

speedups of 3.54x on SSSP and 4.44x on CC. 

5.3 Explaining the Performance Improvement 

The speedup of LazyGraph demonstrated in Fig.9 is due to 

reducing the number of global synchronizations and 

communication traffic. Since any changes to vertex data 

must be immediately communicated to all replicas of v, the 

eager data coherency approach leads to frequent global 
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synchronization and communication. Fig.10 shows the 

number of global synchronizations for LazyGraph and 

PowerGraph Sync, normalized by PowerGraph Sync. 

Fig.11 shows the communication traffic for LazyGraph and 

PowerGraph Sync. The strong correlation between Fig.9 

and Fig.10/Fig.11 illustrates that decreasing the number of 

global synchronizations and communication traffics leads 

to the performance improvement. 

 Note that in Fig.9, 10 and 11, the speedup rate of our 

approach largely depends on the replication factor λ  of 

input graphs, and is independent of the graph sizes and the 

number of iterations. The lower λ of the input graph, the 

greater the speedup of LazyGraph. λ is 2.09 (roadNet-CA) 

< 2.14 (road-USA) < 2.47 (web-Google) < 2.7 (com-

youtube) < 3.51 (UK-2005) < 4.96  (soc-LiveJournal) < 

5.52 (twitter) < 7.22 (enwiki), respectively. 

5.4 Scalability 

We evaluate the scalability of LazyGraph, PowerGraph 

Sync and Async with the increasing number of machines 

on PageRank and SSSP algorithms with UK-2005, road-

USA, and twitter graphs. These three graphs represent web, 

road and social networks, respectively. As shown in 

Fig.12(a-f), LazyGraph has a good scalability when the 

machines number increases. Note that in Fig.12(e), 

PowerGraph Async does scale with machines on PageRank 

with twitter graph, but gets performance degradation on 

SSSP and PageRank with web and road graphs, when the 

machine number is larger than 16. Fig.12(g)(h) show the 

speedups of LazyGraph, PowerGraph Sync and Async for 

PageRank and SSSP with these three graphs on 16 

machines and 24 machines. LazyAsync has a better 

scalability than Async. 

6 Related Work 

Table 1.  Real-world graphs used for evaluation 
 Graph #V #E E/V λ 

web 
UK-2005 40M 936M 23.73 3.51 

web-Google 0.9M 5.1M 5.83 2.47 

road 
road_USA_net 24M 58M 2.44 2.14 

roadNet-CA 2M 5.5M 2.82 2.09 

social 

twitter 61.58M 1468M 23.85 5.52 

soc-LiveJournal 4.84M 68.9M 14.23 4.96 

enwiki 4.2M 101.36M 24.09 7.22 

com-youtube 1.1M 6M 5.27 2.70 

           

(a)  k-core                              (b) PageRank                              (c) SSSP                                 (d) CC 

Figure 9.  Speedup comparisons for k-Core, PageRank, SSSP and CC on real-world graphs on 48 machines  

         

(a)  k-core                                 (b) PageRank                             (c) SSSP                          (d) CC 

Figure 10. Normalized number of global synchronizations for k-Core, PageRank, SSSP and CC on 48 machines 

     

(a)  k-core                                (b) PageRank                              (c) SSSP                        (d) CC 

Figure 11. Normalized Communication traffic for k-Core, PageRank, SSSP and CC on 48 machines 
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A large number of graph-parallel systems [1-19] have been 

proposed to process large-scale graphs. Pregel[1], 

Giraph[6], Cyclops[48], GraphX[5] and Gemini[4] adopt 

the Bulk Synchronous Parallel (BSP) model which has a 

global synchronization after each iteration. GraphLab[2], 

PowerGraph[3], PowerLyra[8], Trinity[7] and GRACE[19] 

provide Sync and Async engines to process a graph. 

PowerSwitch allows dynamic switching between sync and 

async engines to gain optimal performance. However, all of 

them use eager data coherency for replicas of a vertex, 

which leads to frequent global synchronization and 

communication. LazyGraph uses the lazy data coherency 

approach LazyAsync to solve this problem. 

Recently, Hieroglyph[52] enables each replica to 

independently update its local data as well. But there are 

three differences between Hieroglyph and LazyGraph. 1) 

Hieroglyph focuses on decoupling computations from 

communications to obtain locally sufficient computation; 

LazyGraph focuses on delaying the data coherency 

between replicas to reduce the number of global 

synchronizations and network traffic. 2) In Hieroglyph, 

user-defined functions resolve the inconsistency. In 

LazyGraph, the system automatically maintains the data 

coherency for replicas. 3) LazyGraph supports two 

transmission modes. Hieroglyph supports one-edge mode. 

Many works have attempted to optimize distributed 

graph processing systems from graph partitioning 

[3,4,8,33,20-25] to reduce communication cost and load 

imbalance, overlapping communication and computation 

[4,34,35] to achieving scalability, and accelerating 

computation by using multi-core[15-19,55,56] and 

GPU[44,45,54]. If putting these optimizations and the 

LazyAsync execution model together, the distributed graph 

system will achieve good efficiency and scalability. 

There are other works that focus on graph querying 

systems [36-38], machine learning and data mining systems 

[43], temporal analytics [39-42], and streaming processing 

systems [47]. For distributed parallel graph algorithms, it 

could also be beneficial to apply lazy data coherency 

approach LazyAsync in LazyGraph to boost performance. 

7 Conclusion 

In this paper, we propose a lazy data coherency approach, 

called LazyAsync, which treats replicas of a vertex as 

independent vertices and maintains the data coherency by 

computations, rather than communications in existing eager 

approach. LazyAsync delays the data coherency between 

replicas of a vertex, asynchronously executes replicas of a 

vertex and reduces the number of global synchronization 

and network traffic. Based on PowerGraph, we develop a 

distributed graph processing system called LazyGraph that 

1) uses the LazyAsync approach as the execution model to 

reduce the number of global synchronization and 

communication; 2) supports two message transmission 

modes at the same time to benefit from one-edge mode on 

saving computation and parallel-edges mode on saving 

transmission cost; 3) exploits graph-aware optimizations 

including adaptive interval strategy between two adjacent 

data coherency points, dynamic switching between all-to-

all and mirrors-to-master communication modes. On a 48-

node EC2-like cluster, LazyGraph outperforms 

PowerGraph across a variety of real-world graphs, with a 

speedup ranging from 1.25x to 10.69x. 
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