
PPOpenCL: A Performance-Portable OpenCL Compiler with
Host and Kernel Thread Code Fusion

Ying Liu
State Key Laboratory of
Computer Architecture,
Institute of Computing
Technology, Chinese
Academy of Sciences

Beijing, China
liuying2007@ict.ac.cn

Lei Huang
State Key Laboratory of
Computer Architecture,
Institute of Computing
Technology, Chinese
Academy of Sciences

Beijing, China
leihuang@ict.ac.cn

Mingchuan Wu
SKL Computer

Architecture, ICT, CAS
Beijing, China

University of Chinese
Academy of Sciences

Beijing, China
wumingchuan@ict.ac.cn

Huimin Cui
SKL Computer

Architecture, ICT, CAS
Beijing, China

University of Chinese
Academy of Sciences

Beijing, China
cuihm@ict.ac.cn

Fang Lv
State Key Laboratory of
Computer Architecture,
Institute of Computing
Technology, Chinese
Academy of Sciences

Beijing, China
flv@ict.ac.cn

Xiaobing Feng
SKL Computer

Architecture, ICT, CAS
Beijing, China

University of Chinese
Academy of Sciences

Beijing, China
fxb@ict.ac.cn

Jingling Xue
School of Computer

Science and Engineering,
University of New South

Wales
Sydney, NSW 2052,

Australia
j.xue@unsw.edu.au

ABSTRACT
OpenCL offers code portability but no performance portability. Given
an OpenCL program X specifically written for one platform P , ex-
isting OpenCL compilers, which usually optimize its host and ker-
nel codes individually, often yield poor performance for another
platform Q . Instead of obtaining a performance-improved version
ofX forQ via manual tuning, we aim to achieve this automatically
by a source-to-source OpenCL compiler framework, PPOpenCL.
By fusing X ’s host and kernel thread codes (with the operations
in different work-items in the same work-group represented ex-
plicitly), we are able to apply data flow analyses, and subsequently,
performance-enhancing optimizations on a fused control flowgraph
specifically for platformQ . Validation against OpenCL benchmarks
shows that PPOpenCL (implemented in Clang 3.9.1) can achieve
significantly improved portable performance on seven platforms
considered.

CCS CONCEPTS
• Software and its engineering → Source code generation.
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1 INTRODUCTION
Nowadays, heterogeneous architectures have been extensively
adopted in a wide range of computer systems, ranging from mo-
bile devices to supercomputers. Heterogeneous systems are typ-
ically equipped with both CPUs and accelerators, such as GPUs.
However, the diversity of accelerators makes cross-platform pro-
gramming a big challenge, thus forcing programmers to write and
maintain multiple source code versions for a program on differ-
ent platforms, e.g., CUDA [28] for NVIDIA GPUs and OpenMP for
CPUs.

OpenCL [13] addresses this cross-platform programming chal-
lenge by providing a unified parallel programming interface for di-
verse heterogeneous systems. However, OpenCL guarantees cross-
platform portability only in terms of functionality but not perfor-
mance [8, 32, 34, 39, 54]. Therefore, most OpenCL benchmarks pro-
vide multiple source code versions for a program optimized for dif-
ferent platforms, including, e.g., one for CPUs and one for GPUs.

Figure 1(a) shows the performance results of twoOpenCL bench-
marks, lbm and stencil, selected from Parboil [46], running on
seven platforms (Table 3), with two versions per benchmark, vCPU
for CPUs and vGPU for GPUs. In addition, Figure 1(b) compares
the performance results of stencil for its four versions, vCPU,
vGPU, vN-G (a version written by us for NVIDIA GPUs), and vA-
G (a version written by us for AMD GPUs). For a program running
on a platform, the speedups of its different versions are given (with
vCPU as the baseline, but implicitly in Figure 1(a)).
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(b) Speedups over vCPU (shown explicitly)

Figure 1: Performance variations on seven platforms (with
the speedups of a program’s versions normalized to vCPU).

Two observations are in order. First, different versions of a pro-
gram exhibit large performance variations, with no version being
the winner across all the platforms. For example, the speedup of
vGPUover vCPU for lbm is 0.91x onAMDCPUs but 8.5x onNVIDIA
GPUs (Figure 1(a)). Second, even for different GPU platforms, stick-
ing to a fixed GPU version for a program does not guarantee the
best performance possible for each platform. As shown in
Figure 1(b), vN-G (optimized for NVIDIA) is 21.9% faster than vGPU
on NVIDIA GPUs but 6.7% slower than vGPU on AMD GPUs. Sim-
ilarly, vA-G (optimized for AMD) is 21.5% faster than vGPU on
AMD GPUs but 3.2% slower than vGPU on NVIDIA GPUs.

Given an OpenCL program specifically written to achieve good
performance for one platform, how do we obtain a version of this
program that also achieves good performance for another platform?
Instead of manual tuning, we aim to achieve this by using a source-
to-source OpenCL compiler framework that can automatically ap-
ply platform-specific performance-enhancing optimizations to ob-
tain a platform-specific version. Efforts on addressing such cross-
platform performance portability issue exist, but mostly for
GPUs [23, 53]. Recently, POCL [16] and HPVM [43] are introduced
to provide performance-portable OpenCL compilers for different
types of accelerators, focusing on optimizing kernel codes only, by
applying, e.g., loop optimization, memory optimization, vectoriza-
tion, and barrier optimization.

However, we have observed that host-code-related optimizations,
such as data layout and thread reorganization, are not only platform-
specific but also performance-critical. In addition, optimizing the
host and kernel codes individually in isolation may not achieve
portable performance well. Given an OpenCL program X written
for platform P but executed on platformQ , we generate a platform-
specific version of X for platform Q , by (1) fusing X ’s host and
kernel thread codes (with the operations in different work-items
in the same work-group represented explicitly), (2) detecting the
aliased host and kernel variables (due to the host-device data trans-
fer via kernel arguments) to enable data flow analyses to be applied

more precisely on the fused CFG thus obtained, and (3) applying
performance-enhancing optimizations, with (1) – (3) geared specif-
ically for platform Q .

In summary, this paper makes the following contributions:

• We introduce PPOpenCL, a source-to-source OpenCL com-
piler for improving performance portability:
– We propose an approach to build a fused CFG for the host

and kernel thread codes of an OpenCL program for a par-
ticular platform, WII-CFG (Work-Item Interleaving CFG),
which makes explicit the platform-specific execution or-
der for the operations in thework-items of the samework-
group.

– We detect the aliased host and kernel variables via kernel
arguments to enable traditional data flow analyses to be
applied more precisely on WII-CFG.

– We describe three platform-specific performance-
enhancing optimizations, data layout, thread reorganiza-
tion and holistic vectorization, on WII-CFG.

• We show the effectiveness of PPOpenCL on achieving
portable performance across a variety of platforms.

The rest of the paper is organized as follows. Section 2 moti-
vates our work with an example. Section 3 introduces our compiler
framework. Section 4 describes our evaluation. Section 5 discusses
the related work. Section 6 concludes.

2 MOTIVATION
As a unified parallel programming framework for heterogeneous
architectures, OpenCL provides a platform-independent abstract
platform model, enabling programmers to arrange computations
and data references according to the OpenCL execution model and
memory model [13]. In particular, the platform model consists of
a host equipped with several OpenCL devices, with each device
being divided into several compute units (CUs), which are further
divided into several processing elements (PEs).Thememorymodel
defines twomemory regions, the hostmemory and the devicemem-
ory, which are available to the host and kernel codes, respectively.
The execution model is defined in terms of two distinct units of ex-
ecution, the kernel code running on several OpenCL devices and
the host code on the host. When a kernel is submitted for execu-
tion, an index space, i.e., NDRange is defined, in which each point
is a work-item (kernel thread) running on one PE. The work-items
are organized into work-groups, with each work-group running
on a CU.

To support the OpenCL programming model, an OpenCL com-
piler framework usually consists of two compilers, the host com-
piler and the kernel compiler, for a platform. When compiling an
OpenCL program, the host compiler compiles the host code and
links it with the OpenCL libraries. The kernel compiler, invoked
when the program execution starts, generates the executable code
for onework-item via the clBuildProgram()API.Then the executable
code is duplicated for all work-items in the same work-group, dis-
patched to different PEs via the clEnqueueNDRangeKernel() API.

This dichotomy of host and kernel compilers aims largely to
achieve code portability across different platforms. However, per-
formance portability cannot be guaranteed.
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    Host code (with lines in yellow as calls to the OpenCL library)

1   main(...) {
2       //neighbors of atoms declared and initialized
3       int h_n[nA*nN]; float h_f[nA],h_p[nA]; cl_mem d_n, d_f, d_p;
4       for (i =0;i<nA;i++)
5           for(j=0;j<nN;j++)
6              h_n[i+j*nA] = neighborIter[i][j];
7       clCreateBuffer(d_n, nA*nN*sizeof(int)); clCreateBuffer(d_f,...);clCreateBuffer(d_p, ...);  
8       clEnqueueWriteBuffer(d_n, h_n, nA*nN*sizeof(int)); clEnqueueWriteBuffer(d_p, h_p, ...);
9       //kernel compiler invoked to generated code for one work-item

10    clCreateProgramWithSource(prog,”kernel.cl”); clBuildProgram(prog);

11    //task granularity determined
12    clSetKernelArg(ker, 0, d_f); clSetKernelArg(ker,1,d_p);
13    clSetKernelArg(ker, 2, d_n); clSetKernelArg(ker,3,nN);
14    clSetKernelArg(ker, 4, nA); ...
15    g_size=[nA,1,1];l_size=[128,1,1];
16    //work-items dispatched for execution
17    clEnqueueNDRangeKernel(ker, g_size,l_size);
18    clFinish();
19    //results transferred back from devices to host
20    clEnqueueReadBuffer(h_f, d_f, nA*sizeof(float));
21    //post-processing on the results received
22    compute(...); 
23 }

   Kernel code

1  __kernel ker(__global float* f, 
2                           __global float* p,
3                           __global int* n, 
4                           int N, int A...) {
5         //computation for one work-item
6         tid=get_global_id(0);
7         for (j=0; j < N; j++) {
8            idx=n[tid+j*A]; pos=p[idx];...
9         }
10      f[tid]=...
11 }

...
          for (j=0; j < N; i++) {
             idx=n[tid*N+j]; pos=p[idx];...
          }
...

...
       for (i=0;i<nA;i++) 
          for(j=0;j<nN;j++)
             h_n[i*nN+j]=neighborIter[i][j];   
...

Figure 2: An OpenCL program for md.

Figure 2 illustrates the challenge faced in achieving performance
portability with an OpenCL program abstracted from md, in the
SHOC benchmark suite [6], initially written for GPUs.This program
performs an nbody simulation of nA atoms based on its nN neigh-
bors. The host code consists of lines 3-6 (for declaring the atoms
and their neighbors used) and line 22 (for post processing the re-
sults returned from the kernel code) in green, as well as lines 7-20
(for calling appropriate APIs in the openCL library) in yellow. The
kernel code consists of lines 1-11 (for computing one atom’s result
based on its neighbors in one work-item) in red.

When md is compiled for CPUs, the kernel compilerwill find that
the data layout of n is not cache-friendly, but no avail since this
is dictated by lines 4-6 in the host code. Therefore, programmers
are expected to write another better-performing version for CPUs.
To automate this process, PPOpenCL will fuse the host and kernel
thread codes together and transform both simultaneously, with the
modifications in blue.Themodified versionwill be compiled by the
host and kernel compilers to run more efficiently on CPUs.

3 THE PPOPENCL FRAMEWORK
Figure 3 depicts the flow chart of PPOpenCL. Given an OpenCL
program, PPOpenCL will turn it into a platform-specific OpenCL
version in three phases: (1) control flow analysis for building a fused

CFG for its host and kernel thread codes, (2) data flow analysis for
capturing the data flow across the fused CFG, and (3) performance-
enhancing optimizations for improving the performance of the
platform-specific version generated on the fused CFG.

Currently, all the analyses are static, without relying on any pro-
filing information related to host and kernel codes.

3.1 Control-Flow Analysis
The objective is to build a CFG for the fused host and kernel thread
codes of an OpenCL program on a given platform. This is done in
two steps. First, we inline the CFG of a kernel inside the host pro-
gram, obtaining an inlined CFG (Section 3.1.1). Second, we repli-
cate the CFG of a kernel by representing explicitly the execution
order for the operations in the work-items of the samework-group,
thereby enabling our later data flow analyses and optimizations.

3.1.1 Inlining Kernels Inside the Host Program. We traverse the
CFG of the host code (host CFG), built by the host compiler, look-
ing for a kernel launching API invocation. When one is found, we
inline its CFG (kernel CFG), built by the kernel compiler, in the host
CFG. As is standard, a call (return) edge from this call site (the exit
of the kernel CFG) to the entry of the kernel CFG (this call site) is
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Figure 3: The PPOpenCL compiler framework.

also added. This inlining process works for multiple kernel launch-
ing points, possibly inside loops with arbitrary control flow.

At this stage, the CFG obtained is called an inlined CFG.

3.1.2 Modeling the ExecutionOrder ofWork-Items. For theOpenCL
execution model, it suffices to model the execution order of the op-
erations in the work-items from the same work-group. Their exe-
cution order is platform-dependent. A platform can choose to im-
plement the OpenCL execution model in different ways, thereby
introducing different execution order constraints. For example, the
work-items in a work-group are executed in the SIMT manner on
NVIDIA GPUs and serially on AMD CPUs and Tilera.

WII Functions. To express such execution order, we associate
a function, a WII (Work-Item Interleaving) function, with the call
edge of each kernel (in the inlined CFG). For a given work-item,
all its operations are executed serially in a sequence and can thus
be identified by an integer (starting from 0), representing its posi-
tion in the sequence. The operations inside branches are guarded.
For an operation op in a kernel’s work-item identified by is thread
id (local_id) tid (starting from 0) for platform P ,WIIP (tid,op) is
an integer that specifies the (logic) step at which op is executed.

tid0.op0

Serial

0

1

2

...

10

11

tid0.op1

tid0.op2

...

tid3.op2

tid3.op3

0

1

2

3
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tid0.op1

tid0.op2

tid0.op3

tid1.op0

tid1.op1

tid1.op2

tid1.op3
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tid2.op1

tid2.op2

tid2.op3

Data-Parallel

...

tid3.op0

tid3.op1

tid3.op2

tid3.op3

Figure 4: Two representative execution orders.

Figure 4 depicts two representative execution modes, “Serial”
and “Data-Parallel”. In each case, the right column lists the op-
erations, indexed by tid .op, in a work-item, and the left column
gives their execution order. Table 1 gives their corresponding WII
functions, together with some representative platforms supporting
these execution orders. All these seven platforms are taken from
Table 3.

Obtaining the Fused CFG. Given the inlined CFG obtained, we
can build the fused CFG, called WII-CFG, by making explicit the

execution order of the operations in the work-items in a work-
group for a kernel according to its WII function. This is a simple
process of replicating the kernel CFG by grouping together the op-
erations in different work-items scheduled together and adding the
control flows where appropriate across these groups. A group of
operations sharing the same opcode is identified as a vector oper-
ation. In the case of multiple kernels running on different archi-
tectures, different target-specific WII-functions will be used. Note
that execution-order-sensitive built-ins, such as barriers, are han-
dled according to [16, 22], and execution-order-insensitive built-
ins, such as atomics, don’t affect correctness. Currently, some ad-
vanced built-ins, such as device-side enqueue_kernel(), are not
yet optimized.

Figure 5 shows how to build the WII-CFGs using the WII func-
tions in Table 1 for a kernel as shown. For serial execution, the ker-
nel CFG is replicated conceptually rather than physically as many
times as the number of work-items,M . For data-parallel execution,
the number of replications is ⌈M/N ⌉ times (where N = 2 is the
degree of parallelism), with the identically numbered operations
from N work-items replaced by one vector operation.

3.2 Data Flow Analysis
In the OpenCL memory model, the host and device have separate
memory spaces. Thus, programmers need to explicitly manage the
data transfer between the two.

For a shared memory space, two variables are aliases if they
point to the same data. This notion carries over naturally to sep-
arate memory spaces. In this paper, a host object (residing in the
host) and a kernel object (residing in the device memory) are said
to be aliased if both operate on the same data via a kernel argu-
ment (made possible due to the explicit host-device data transfer
between the objects).

In Section 3.2.1, we discuss how to identify such aliases. In Sec-
tion 3.2.2, we describe briefly how traditional data flow analyses
can be then applied (more precisely).

3.2.1 Identifying Aliased Host and Kernel Objects. The aliased host
and kernel objects are found simply by traversing the host pro-
gram. For buffers (one of the most widely used data structures),
these aliases can be found by looking for calls to
clEnqueueWriteBuffer() and clEnqueueReadBuffer() (indicat-
ing the direction of the data transfer), as well as setKernelArg()
(for the corresponding kernel parameter connecting the aliased ob-
jects).
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Table 1:TheWII functions for the two execution orders depicted in Figure 4, supported by some platforms. For “Data-Parallel”,
N is the degree of parallelism, which is 4 on Intel Xeon CPUs, 16 on Xeon Phi, 32 on NVIDIA GPUs, and 64 on AMD GPUs.

Execution Mode WII Function Representative Platforms
Serial num_of_op ∗ tid+ op AMD CPUs/Tilera/SW26010

Data-Parallel num_of_op ∗
[
tid
N

]
+ op Intel CPUs/Xeon Phi/NVIDIA GPUs/AMD GPUs
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...

...
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Work-Item	3
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(a) Inlined CFG (b) Serial CFG (c) Data-parallel CFG

Figure 5: Constructing the WII-CFGs in (b) and (c) using the two WII functions in Table 1 from the inlined CFG in (a). In (c)
the degree of parallelism is assumed to be N = 2.

Table 2 gives the three aliases for the buffers in Figure 2. For
example, the host object h_n and the kernel object d_n are aliased
via clEnqueueWriteBuffer() in line 8, where d_n is specified as
the 2nd argument of a call to “ker” in line 13.

The aliases for other types of objects can be detected similarly.
Take images for example.TheAPI calls for establishing their aliases
are clEnqueueWriteImage() and clEnqueueReadImage() instead.

A scalar in the host program may be indirectly assigned to a
formal parameter of a kernel also using clSetKernelArg(). For
example, in Figure 2, nN (nA) in the host program is assigned to
N (A) in line 13 (line 14). In essence, their underlying objects are
actually aliased and also detected.

Table 2: The aliases host and kernel objects in Figure 2.

Host
Object

Kernel
Object

Kernel
Argument

Transfer
Direction

h_f d_f ker (0th) read
h_p d_p ker (1st) write
h_n d_n ker (2nd) write

3.2.2 Applying Traditional Data Flow Analyses. Traditional data
flow analyses, such as du-chain and liveness analyses, can now be

applied to WII-CFG in the usual manner, except that the aliases
detected above are used.

Let us revisit the program in Figure 2 that is originally writ-
ten for GPUs but now intended to run on CPUs. The kernel com-
piler, which compiles “ker” alone, cannot improve its poor cache
locality due to the strided accesses to n. In PPOpenCL, however,
n is known to be aliased with h_n (Table 2), as they operate on
the same data. Therefore, the locality-enhancing transformations
as shown in blue are performed automatically. In more complex
cases, some data flow analysis is needed, assisted by such alias in-
formation.

3.3 Performance-Enhancing Optimizations
Given the newoptimization opportunities exposed across the bound-
aries of the host and kernel thread codes for a platform, PPOpenCL
will now apply performance-enhancing optimizations to the fused
CFG to produce a platform-specific OpenCL program. This opti-
mized program will be compiled by the host and kernel compilers
to run on the platform. Note that PPOpenCL focuses on optimiza-
tions requiring both host and kernel transformations, host-only or
kernel-only optimizations, such as adjusting work sizes and opti-
mizing local memory usage, can be applied to the optimized codes
produced by PPOpenCL, to obtain further performance gains.
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WII-CFG//Host code
{...
clEnqueNDRangekernel(…,[2,2,1])
…}

//Kernel code
__kernel foo(__global float* a, b, c)
{
    for i = 0:1 
    {  m =  a(2*tx+i)
        for j = 0:1
        {  n = b(2*j+ty)
            c(2*tx+ty) += m*n
        }
    }
}

n = b(0)/b(2)

...= m*n

   (tx,ty)=(0,0)

   (tx,ty)=(1,0)

   
(tx,ty)=(0,1)

   
(tx,ty)=(1,1)

n = b(0)/b(2)

...= m*n

n = b(1)/b(3)

...= m*n

n = b(1)/b(3)

...= m*n

D0

U0

D1(=D0)

U1

D2

U2

D3(=D2)

U3

WII-CFG

n = b(0)/b(2)

… = m0*n
… = m1*n

ty’=0

D0

U0
U1

n0 = b(1)/b(3)

… = m0*n
… = m1*n

D2

U2
U3

DU-chains of n

Coarsening

along x

//Host code
{...
clEnqueNDRangekernel(…,[1,2,1])
…}

//Kernel code
__kernel foo(__global float* a, b, c)
{
    for i = 0:1
    {  m0 =  a(i)
        m1 =  a(i+2)
         for j = 0:1
         {  n = b(2*j + ty’)
             c(ty’) += m0*n
             c(2+ty’) += m1*n
          }
     }
}

(a) Original code (b) DU-chains of n before coarsening (c) DU-chains of n after coarsening (d) Optimized code

   (tx,ty)= 
(0,0)&(1,0)

ty’=1

   (tx,ty)= 
(0,1)&(1,1)

DU-chains of n

Figure 6: Thread reorganization via coarsening.

Below,we describe three important newoptimizations, (1) thread
reorganization, (2) data layout optimization, and (3) holistic vector-
ization, that we have added in PPOpenCL, all focusing on the work-
items in the same work-group. They are applied in the order given,
i.e., (1) – (3), as (1) exposes opportunities to (2) and also forms the
basis for (3). Furthermore, (2) can also open up new opportunities
for (3).

3.3.1 Thread Reorganization. TheOpenCL programmodel encour-
ages a large number of work-items, i.e., threads to be created in a
work-group in order to balance workload and hide latency during
runtime thread scheduling, at the expense of introducing redun-
dant operations across thework-items. Such redundancy can result
in runtime overhead for some platforms such as CPUs equipped
with effective thread schedulers. Therefore, a coarser granularity
can be obtained with thread coarsening.

We achieve this by performing a thread reorganization that ap-
plies a coarsening factor to a particular dimension in the NDRange
of awork-group. In particular, PPOpenCL examines the inter-thread
du-chains in WII-CFG and picks the best dimension to coarsen in
order to maximize the amount of redundancies removed, without
significantly reducing the amount of parallelism exploited in the
original program.

Figure 6 gives an examplewith fourwork-items in awork-group.
For the code in Figure 6(a), its du-chains for n are given in Fig-
ure 6(b). By coarsening the x dimension by a factor of 2, work-
items (0, 0) and (1, 0) are merged and work-items (0, 1) and (1, 1)
are also merged. As a result, some redundant operations in each
pair of two merged work-items have been eliminated, as revealed
in Figure 6(c). Finally, the coarsened code is given in Figure 6(d).
For this example, the y dimension can be coarsened in a similar
way.

The thread reorganization optimization is done according to Al-
gorithm 1. We find the best NDRange dimension d to coarsen with
a factor of fc by maximizing the execution time reduced (line 16),
computed from the redundant operations eliminated (line 9), sub-
ject to some constraints on the amount of parallelism lost (line 15,
i.e., Algorithm 2). Finally, host and kernel codes are transformed
accordingly (lines 18 – 19).

Algorithm 1 Thread Reorganization
1: Cycler ed = [0, 0, 0] // cycles saved for dimensions x , y, z
2: Fc = [0, 0, 0] // coarsening factors for x , y and z
3: for all variables v do
4: du−chain ←WIICFG .Kernel().BuildDU (v)

5: for all dimensions d in {′x ′,′y′,′ z′} do
6: if Coarsenable(du−chain,d) then
7: Fc [d] = local_size(d) // size of dimension d

8: for all reducible operations op of v do
9: Cycler ed [d]+ = op.latency

10: end for
11: end if
12: end for
13: end for
14: if Fc , [0, 0, 0] then
15: Fc = ApplyConstraints(Fc , {′x ′,′y′,′ z′})
16: Let d be the dimension such that Cycler ed [d] ∗ Fc [d]

is the largest (among dimensions x , y and z)
17: fc = Fc [d]

18: CoarsenThreads(WIICFG .Kernel(),d, fc )

19: ChanдeNDRanдe(WIICFG .Host(),d, fc )

20: end if

Algorithm 2 ApplyConstraints(Factor ,Dims)
1: ifWIICFG .type() == ”GPU ” then
2: for all dimensions d in Dims do
3: Let s be the size of dimension d of a work-group

and s1 × s2 the sizes of its other two dimensions
4: Adjust Factor [d] so that it is still the largest

satisfying (1) s/Factor [d] × s1 × s2 ⩾ 128 and
(2) 32 | (divides) s/Factor [d] × s1 × s2

5: end for
6: else ifWIICFG .type()==”Intel” && ′x ′ ∈Dims then
7: Factor [′x ′] = 1
8: end if
9: return Factor
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//Host code
{...
clWriteBuffer(d_a, A);
...
clSetkernelArg(foo,0,d_a);
//launching kernel “foo”
//with local_size=[4,1,1]
…}

//Kernel code
__kernel 
foo(__global int* a) {
  …=a[tid]
  …=a[4+tid]
}

   vld  a(0,1,2,3)
   vld  a(4,5,6,7)

Reuse distance = 0

ld  a(0)
ld  a(4)

ld  a(1)
ld  a(5)

Reuse distance = 1

Serial:

Data 
Parallel:

(a) Original code

Coalesced Layout
//Host code
{…
A’=shuffle(A)
clWriteBuffer(d_a, A’)
…
clSetkernelArg(foo,0,d_a)
//launching kernel “foo”
//with local_size=[4,1,1]
…}
//Kernel code
__kernel 
foo(__global int* a’) {
  …=a’[2*tid];
  …=a’[2*tid+1];
}

(b) Optimized code

Continuous Layout

ld  a(2)
ld  a(6)

ld  a(3)
ld  a(7)

   vld  a’(0,2,4,6)
   vld  a’(1,3,5,7)

Reuse distance = 3

ld  a’(0)
ld  a’(1)

ld  a’(2)
ld  a’(3)

Data 
Parallel:

ld  a’(4)
ld  a’(5)

ld  a’(6)
ld  a’(7)

Serial:

Reuse distance = 0

Figure 8: Data layout optimization for an example (with two int elements per cache line and four work-items per work-group).

In ApplyConstraints(), constraints are introduced to reduce
the amount of parallelism lost. For GPUs, we require the two con-
ditions stated in line 4 to hold for every coarsened dimension (as
recommended in [28]). For data parallel platforms such as Xeon
Phi and Intel CPUs, the coalescing factor for the x dimension is
simply 1 (line 7) since the work-items in a work-group will be vec-
torized along this dimension (implying that this dimensionwill not
be coarsened). For any non-divisible coarsening factor, global/local
work-sizes are simply rounded up (with non-ops inserted) [41].

The amount of control divergence may reduce the amount of
inter-work-item redundancies that can be potentially eliminated
by the kernel compiler. In the absence of control divergence, the ex-
posed redundancies can be eliminated with CSE (Common Subex-
pression Elimination). In the presence of control divergence, PRE
(Partial Redundancy Elimination) [52] may be used instead.

3.3.2 Data Layout Optimization. As described in Section 2, a plat-
form dictates how the work-items in a work-group are executed.
When a buffer is accessed by multiple work-items, our optimiza-
tion selects one of the two data layouts, as illustrated in Figure 7,
and performs the required code transformation for the platform.

For GPUs, a coalesced layout is always preferred as this option
enables global memory coalescing to be performed.

For the other data-parallel platforms (excluding GPUs) and se-
rial platforms (with a few representatives listed in Table 1),
PPOpenCL picks a data layout for the purposes of improving the
cache locality of their on-chip memory, based on the (cache line)
reuse distance metric [7]. For platforms such as SW26010 [11] with
a compiler-managed scratchpad memory, the cache line size is as-
sumed to be the scratchpad size.

The objective of this optimization is to select a suitable data lay-
out for a kernel object (e.g., a buffer) assessed in a kernel. Note that
the elements in such a buffer can be transferred to the local mem-
ory in the same way as they are transferred to registers. Hence, no

Work-Item 0 Work-Item 1 Work-Item 2 Work-Item 3

op0

op1

op2

(a) Different work-items access different buffer elements

Work-Item	0
(ops	0-3)

Work-Item	1
(ops	0-3)

Work-Item	2
(ops	0-3)

Work-Item	3
(ops	0-3)

(b) Continuous layout with intra-work-item locality

op0
(Work-Items	0-3)

op1
(Work-Items	0-3)

op2
(Work-Items	0-3)

(c) Coalesced layout with inter-work-item locality

Figure 7: Two data layouts for a buffer.

complication should arisewhen the localmemory is involved. For a
buffer (accessed in a kernel), its reuse distance, which is computed
on WII-CFG, is platform-dependent. Given a platform, PPOpenCL
selects one of the two data layouts (shown in Figure 7) with the
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Algorithm 3 Data Layout Optimization
1: for all kernel objects A do
2: assert(A’s layout is continuous or coalesced)
3: curRD = CalculateRD(WIICFG .Kernel(),A)

4: if curRD == 0 then
5: continue

6: end if
7: tmpKernel ← OtherLayout(WIICFG .Kernel(),A)

8: otherRD = CalculateRD(tmpKernel ,A)

9: if otherRD < curRD then
10: WIICFG .SetKernel(tmpKernel)

11: Shu f f le(WIICFG .Host(),AliasedObj .Get(A))

12: end if
13: end for

smaller reuse distance according to Algorithm 3. PPOpenCL ap-
plies this optimization only to an object with a continuous or co-
alesced layout (line 2). The reuse distances for the original and al-
ternate layouts are calculated (lines 3 and 8), based on a standard
locality analysis algorithm [26], by grouping array references (e.g.,
buffers as 1-D arrays) in loops (created after the CFG fusion) in
terms of their array indices. Finally, the layout with the smaller
reuse distance is selected (and transformed if necessary).

Currently, the data layout optimization is conservative. Given a
buffer represented by a variablev , this optimization is applied only
when it is accessed via v itself rather than also its aliases (found
based on its du-chains and ud-chains). A more sophisticated alias
analysis [47] may be needed to expose more opportunities for the
optimization.

Figure 8 illustrates our optimization for a small OpenCL pro-
gram, assuming two elements per cache line (for the on-chip mem-
ory) and four work-items per work-group. In the original program
given in Figure 8(a), which adopts a coalesced layout for buffer a,
its reuse distance is 0 for a data-parallel platform and 1 for a serial
platform. Therefore, PPOpenCL will retain this layout for a data-
parallel platform. However, for a serial platform, PPOpenCL will
produce the optimized code given in Figure 8(b), which adopts a
continuous layout for buffer a' instead. Its reuse distance is now 3
for a data-parallel platform but 0 for a serial platform.

Note the presence of the shuffle() function provided by
PPOpenCL in the optimized code, which is inserted by line 11 of
algorithm 3. Based on the du-chain for A, A' = shuffle(A) is in-
serted before the kernel call. Similarly, a corresponding shuffle()
call that restores the original layout of A after the kernel call is in-
serted (if needed).

3.3.3 Holistic Vectorization. The work-items in a work-group can
be vectorized in three different ways. First, inter-work-item vec-
torization (i.e., loop level vectorization [56–58]), as shown in Fig-
ure 5(c), is supported by platforms such as Xeon Phi and Intel CPUs.
Second, intra-work-item vectorization (i.e., Superword level paral-
lelism [21, 56]), can be done by the kernel compilers on the plat-
forms equipped with SIMD engines. Finally, programmers can ex-
plicitly vectorize the operations in a work-item by using vector
types (e.g., float2 and float4) or the attribute vec_type_hint(<type>).

//Host code
{ …
// n is a multiple of 4
clCreateBuffer(d_a,...);
clWriteBuffer(d_a,h_a,...);
clSetArgs(foo,0,d_a);
…  //same for d_b
//launching kernel “foo”
//with local_size=[n,1,1]
clReadBuffer(h_c,d_c,...);
… }

//Kernel code
__kernel 
foo(__global float2* a, b, c)
{
  c(tid)=a(tid)+b(tid)
}

//Host code
{ …
// n is a multiple of 4
clCreateBuffer(d_a,...);
clWriteBuffer(d_a,h_a,...);
clSetArgs(foo,0,d_a);
…  //same for d_b
//launching kernel “foo”
//with local_size=[n/2,1,1]
clReadBuffer(h_c,d_c,...);
… }

//Kernel code
__kernel 
foo(__global float4* a, b, c)
{
  c(tid)=a(tid)+b(tid)
}

fv = 2

(a) Original code (b) Optimized code

Figure 9: Holistic vectorization (assuming a vector length of
4 floats). d_a can be padded if n is not divisible by 4.

These three decisions, inter-work-item vectorization (Inter-Vec),
intra-work-item vectorization (Intra-Vec) and explicit vectorization
(Exp-Vec) often yield different performance benefits.

Inter-Vec is powerful for OpenCL programs due to the lack of
the dependencies across different work-items. However, it is only
supported by platforms such as Intel CPUs and Xeon Phi. We have
implemented this technique in PPOpenCL for other platforms.
Given a platform, our holistic vectorization attempts to apply one
of the three techniques, Inter-Vec, Intra-Vec and Exp-Vec, or com-
bine some of these in order to improve the overall performance
benefit obtained.

This optimization is applicable to both CPUs (equipped with
SIMD engines) and GPUs (supporting vector loads/stores, e.g., 64-
bit and 128-bit loads and stores on NVIDIA GPUs).

As shown in Algorithm 4, PPOpenCL first attempts to apply
Inter-Vec to a work-group, when vector loads and stores are possi-
ble (to avoid more expensive gather/scatter operations). When vec-
torizing a work-group, PPOpenCL maximizes the number of work-
items, fv , by maximizing the number of cycles reduced (lines 1 –
2), with fv satisfying the same parallelism-inhibiting constraint in-
troduced by ApplyConstraints() but for dimension x only (line
3). In addition, one additional constraint on register pressure is im-
posed, fv ⩽ reдall

reдwi
, where reдall is the maximum number of reg-

isters allocated to a work-item (an architecture-specific constant)
and reдwi is simply the number of variables available (to approxi-
mate the number of registers used), in order to avoid introducing
register spills (lines 4 – 5).

If Exp-Vec is present, its explicitly vectorized operations are
considered by Inter-Vec (lines 6 – 7). If both Exp-Vec is absent
and Inter-Vec fails, Intra-Vec provided by the platform is used. If
Inter-Vec succeeds, PPOpenCL, as a source-to-source compiler, ex-
presses this by coalescing fv work-items together (lines 9 – 10) and
vectorizing the kernel code in terms of vector types and intrinsic
functions for every kernel object with a continuous layout (lines 11
– 15). If needed, some affected kernel objects are padded (with the
pads initialized with the existing values of some kernel objects).
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Table 4: Benchmarks (together with their descriptions and input sizes used)

Program Source Description Input Size

cutcp Parboil Biomolecular Simulation 96603 atoms
lbm Parboil Fluid Dynamics 120x120x150 cells
mri-q Parboil MRI Reconstruction in non-Cartesian Space 3x262144 pixels
sgemm Parboil Matrix Multiply 1024x992, 1056x992 elements
stencil Parboil 7-point Stencil 512x512x64 grids
spmv Parboil Sparse matrix-vector Multiplication 146689 elements

kmeans Rodinia Data Mining 819200 points x 34 features
backprop (bp) Rodinia Pattern Recognition 65537x17 nodes

nw Rodinia Dynamic Programming 2048x2048x4 points
lavaMD Rodinia Molecular Dynamics 1000 boxes
b+tree Rodinia B+tree Traversal 7874 nodes
cfd Rodinia Computational Fluid Dynamics 193536 elements

gaussian Rodinia Gaussian Elimination 1024x1024 matrix
streamcluster (sc) Rodinia Dense Linear Algebra 65536 points

Algorithm 4 Holistic Vectorization
1: tmpFactor [′x ′] = [SIMDW IDTH ] // the SIMD width
2: tmpFactor = ApplyConstraints(tmpFactor , {′x ′})
3: InterFactor = tmpFactor [′x ′] // Only x vectorizable
4: reдwi = EstimateReдUsaдe(WIICFG .Kernel())

5: InterFactor =min(reдall/reдwi , InterFactor)

6: ExpFactor = DetectExpVec(WIICFG .Kernel())

7: fv = InterFactor/ExpFactor

8: if fv > 1 then
9: CoarsenThreads(WIICFG .Kernel(),′x ′, fv )

10: ChanдeNDRanдe(WIICFG .Host(),′x ′, fv )
11: for all kernel objects A do
12: if Continous(A) then
13: GenerateSIMD(A, fv )

14: end if
15: end for
16: end if

Figure 9 gives an example illustrating our holistic vectorization,
assuming a vector length of four float elements. In the original code
given in Figure 9(a), Exp-Vec is present, with two vector lanes al-
ready taken. By applying Inter-Vec, PPOpenCL finds that fv = 2.
Merging two adjacent work-items gives rise to the optimized code
in Figure 9(b).

4 EVALUATION
We have implemented PPOpenCL in Clang v3.9.1 and evaluated it
on seven platforms listed in Table 3. We have tried all the 11 pro-
grams from Parboil and all the 21 programs from Rodinia. Note
that SPEC ACCEL [19] consists of 19 programs selected from these
two benchmark suites with different inputs. Table 4 lists the 14 pro-
grams (with 11 in ACCEL [19]) for which PPOpenCL achieves either

Table 3: Seven serial and data-parallel platforms.

Platform Compute
Unit

OpenCL SDK
Name Processor

Intel
CPUs

Xeon
E7- 8830

64 cores, 128
threads, 128-bit
vector operations

Intel
OpenCL SDK

AMD
CPUs

Opteron
8 cores, 128-bit

vector operations
AMD

APP SDK

Xeon Phi
Xeon E5-2670 &

Xeon Phi

57 cores,
228 threads, 512-bit
vector operations

Intel
OpenCL SDK

Tilera TileGX-36
36 cores, no

vector operations
SNU-SAMSUNG
OpenCL [22]

SW
26010

MPE &
CPE clusters

256-bit
vector operations

PPOpenCL with
Sunway backend

NVIDIA
GPUs

CPU &
Tesla K40c

15 SMX, 2880 cores
NVIDIA

CUDA SDK

AMD
GPUs

CPU &
Radeon HD

7950

28 SIMD engines,
1792 stream cores

AMD
APP SDK

a positive or negative (i.e., non-1.0x) speedup on at least one plat-
form, togetherwith their input sizes. Note that wewill also give the
speedups achieved by PPOpenCL not only for these benchmarks
but also for the two benchmark suites as a whole.

For Parboil, a program has two versions, OpenCL_base for
CPUs and OpenCL_nvidia for GPUs. For Rodinia, a program has
only one version. For each baseline version on a platform
(OpenCL_nvidia for GPUs and OpenCL_base for others), PPOpenCL
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will produce an optimized version. Both versions will be compiled
by the platform-specific SDK.The speedup achieved by PPOpenCL
is measured as the execution time of the baseline over the opti-
mized version.

4.1 Overall Performance Improvements
Figure 10 shows the speedups achieved by PPOpenCL for the pro-
grams given in Table 4. For a striped bar, its corresponding plat-
form’s SDK either failed to compile the baseline program or the
compiled baseline crashed due to a runtime error. We have not
seen a case where this compile-time/runtime error happened to an
optimized version but not to its baseline.

Our evaluation shows that PPOpenCL can deliver portable per-
formance. For the 14 programs in Table 4, their speedups are fairly
impressive across the seven platforms: 1.22x for Intel CPUs, 2.22x
for AMD CPUs, 1.53x for Xeon Phi, 1.50x for Tilera, 2.18x for
SW26010, 1.23x for NVIDIA GPUs, and 1.30x for AMD GPUs, with
a geomean of 1.55x. PPOpenCL achieves the lowest speedup for
NVIDIA GPUs as most of these benchmarks are originally writ-
ten for NVIDIA GPUs. Note that speedup fluctuations are also an
indication for the poor performance portability of the baseline pro-
grams across these platforms. Also, spmv (the Opencl_nvidia ver-
sion) and stencil (the Opencl_base version) suffer from some
performance losses on GPUs and Xeon Phi, respectively. A more
sophisticated cost model may be needed to overcome this limita-
tion in future work.

For the other 5 programs from Parboil and the 13 programs
from Rodinia, which are not listed in Table 4, PPOpenCL has man-
aged to optimize only two from Rodinia, nn and lud, but with-
out any performance impact at all. With all these programs also
counted (but without the ones whose baselines cannot be executed
correctly, as discussed above), the speedups achieved by PPOpenCL
are still impressive: 1.12x for Intel CPUs, 1.49x for AMD CPUs,
1.26x for Xeon Phi, 1.25x for Tilera, 1.52x for SW26010, 1.11x for
NVIDIA GPUs, and 1.16x for AMD GPUs.

4.2 Individual Optimizations
Figure 11 compares the percentage contributions made by
PPOpenCL’s three optimizations to the performance improvement
of a program on each platform. These results are obtained by grad-
ually introducing the three optimizations, thread reorganization,
data layout optimization, and holistic vectorization, in that order
(applied).

Holistic vectorization is not profitable on Intel CPUs, Xeon Phi
and Tilera. For the former two, Intel SDK applies inter-work-item
vectorization by default. So PPOpenCL’s vectorization is turned
off (Section 3.3.3). For Tilera, vector operations are not supported.
Unlike holistic vectorization, thread reorganization and data lay-
out optimization are both significant on all platforms and more
application-specific.

Let us analyze two benchmarks in Figure 12:
(1) kmeans. Thread reorganization is applied to all platforms,

but without any noticeable performance gains.
Data layout optimization is applied to a buffer, named
d_features, which has a coalesced layout in the baseline
program. PPOpenCL leaves this unchanged for GPUs, thus

resulting in no gains on NVIDIA and AMD GPUs. For the
remaining five platforms, PPOpenCL selects a continuous
layout for d_features, resulting in varying gains. However,
the absolute performance gains for Intel CPUs and Xeon Phi
are smaller, as the reuse distances shortened on both are
not as impressive. For example, the reuse distance on AMD
CPUs (Tilera) is 51200 (204800) for the coalesced layout but
drops to 0 for the continuous layout. For both Intel CPUs
and Xeon Phi, however, the same reduction is achieved but
only from 33 to 15.
As for holistic vectorization, we explained earlier this is not
enabled for Intel CPUs, Xeon Phi and Tilera. For SW26010,
it was not applied. For AMDCPUs, the baseline could not be
vectorized by AMD SDK. PPOpenCL’s vectorization is thus
profitable. For NVIDIA and AMD GPUs, the performance
gains are mainly attributed to the 64-bit and 128-bit vector
loads/stores enabled.

(2) sgemm. Thread reorganization is now profitable for all the
platforms, as some redundant loads for d_a and d_b have
been removed. The absolute gains are less impressive on
NVIDIA and AMD GPUs due to the smaller coarsening fac-
tors used (fc = 2 on GPUs vs. fc = 16 for the others).
Data layout optimization is applied to d_a and d_b, with a
coalesced layout initially in each case. Unlike d_features
above, this optimization, which is similarly applied to both,
is less profitable in percentage terms. Finally, holistic vec-
torization achieves performance gains on AMD CPUs and
SW26010 (as the baseline was not successfully vectorized)
and on NVIDIA and AMD GPUs (due to the 64- and 128-bit
vector loads/stores enabled).

4.2.1 Thread Reorganization. We analyze this using
oclQuasirandomGenerator, abbreviated here to ocl, from [29].
Unlike those from Table 4, ocl allows us to demonstrate how
PPOpenCL selects different optimization strategies for NVIDIA and
AMD CPUs.

This program has a work-group size of [320, 3, 1]. Coarsening
its x dimension allows some redundant load instructions to be re-
moved. On the other hand, coarsening itsy dimension allows some
redundant branch instructions to be removed. For each of the seven
platforms considered, Figure 13 depicts the coarsening factor (and
its corresponding coarsening dimension) selected by PPOpenCL,
togetherwith the performance speedup variationswith these coars-
ening factors. For all the seven platforms, PPOpenCL has succeeded
in picking the best coarsening factor except for Tilera.

For Intel CPUs and Xeon Phi, coarsening the x dimension po-
tentially degrades performance, as it makes it harder to vectorize
the work-items along x . For AMD CPUs and SW26010, the perfor-
mance increases as the coarsening factor along x increases, due to
eliminated load instructions. Tilera is expected to follow the same
trend except for 4 (x). For NVIDIA GPUs, coarsening the y dimen-
sion is better, since this eliminates some branch instructions and
thus reduces warp divergence. For AMD GPUs, coarsening the x
dimension is better, as eliminating some redundant loads is more
performance-critical. However, any coarsening factor larger than
2 along the x dimension degrades performance as the resulting
work-group size will no longer be a multiple of 32.
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Figure 10: Performance speedups on seven platforms.
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Figure 13: Speedups with the coarsening factors along the x
or y dimensions of ocl (selected by PPOpenCL).

4.2.2 Data Layout Optimization. We examine this optimization
using lbm from Parboil. Each work-item operates on a set of 20

data elements associated with a cell in a 3-D mesh. In a continu-
ous layout (adopted by the opencl_base version), the 20 data ele-
ments for a cell are stored together. In a coalesced layout (adopted
by the opencl_nvidia version), the data elements with the same
attribute from all the cells are stored together.

Table 5: Cache Behavior of lbm (by OProfile/Perf/Vtune).

Platform Continuous
Layout

Coalesced
Layout

Intel CPUs
(L1_DCACHE_LOAD_MISS) 8.02E+10 5.47E+10

Xeon Phi
(L1 miss rate) 0.335 0.151

AMD CPUs
((DATA_CACHE_MISSES) 3.63E+11 1.81E+12

Tilera
(READ_MISS) 6.58E+12 6.74E+12

For opencl_base, PPOpenCL retains its continuous layout for
AMD CPUs and Tilera but switches to a coalesced layout for Intel
CPUs and Xeon Phi (based on reuse distance analysis), achieving
1.25x on Intel CPUs and 2.21x on Xeon Phi (Figure 10). As shown
in Table 5, this optimization has succeeded in reducing the cache
miss rate on each platform.

4.2.3 Holistic vectorization. We study this optimization using
mri-q from Parboil for AMD CPUs, Xeon Phi and NVIDIA GPUs.
As the baseline program is not vectorized, PPOpenCL has vector-
ized its work-items by a factor of 4 for AMD CPUs and NVIDIA
GPUs. As for Xeon Phi, this vectorization is not performed, as it
is done by Intel SDK (Section 3.3.3). We show that performing this
optimization by PPOpenCL can be counter-productive.

Figure 14 relates the speedups achieved with the number of vec-
tor arithmetic instructions (varith_ins) and the number of scalar
and vector loads (load_ins), measured by using nvprof for NVIDIA
GPUs, OProfile for AMD CPUs and VTune for Xeon Phi (normal-
ized to the baseline).

For NVIDIA GPUs, arithmetic computations cannot be vector-
ized but memory accesses can. With load_ins reduced to a quar-
ter of that in the baseline, a speedup of 1.15x is obtained. For AMD

12



CC ’19, February 16–17, 2019, Washington, DC, USA Y. Liu, L. Huang, M. Wu, H. Cui, F. Lv, X. Feng, and J. Xue

3.5x 5.4x 7.1x

1.2x

16x 6.1x 6x 3.1x

fa
ile
d

fa
ile
d

0.5x

11x
2.2x

fa
ile
d

fa
ile
d

fa
ile
d 1.3x

0

0.5

1

1.5

2

2.5

cutcp lbm mri-q sgemm spmv stencil kmeans bp nw lavaMD b+tree cfd gaussian sc GEOMEAN

Sp
ee
du
ps

PPOpenCL-Intel	CPUs POCL-Intel	CPUs PPOpenCL-AMD	CPUs POCL-AMD	CPUs

Figure 15: Comparing PPOpenCL and POCL.

5.4x3.5x

0

1

2

AMD	CPUs Xeon	Phi NVIDIA	GPUs

varith_ins load_ins speedups
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CPUs supporting vector operations, varith_ins increases but
load_ins decreases, a speedup of 3.15x is observed. For Xeon Phi,
for which Intel SDK always applies inter-work-item vectorization
to the baseline, vectorizing it earlier by PPOpenCL affects
varith_ins slightly, but increases load_ins substantially due to
register spills, resulting a performance loss of about 10%. Hence,
PPOpenCL is designed not to perform holistic vectorization for In-
tel CPUs and Xeon Phi (Section 3.3.3).

4.3 PPOpenCL vs. POCL
We have compared PPOpenCL with POCL [16] on Intel and AMD
CPUs, since these are the stable platforms supported by POCL cur-
rently. Figure 15 compares both using the benchmarks in Table 4.
PPOpenCL outperforms POCL with a geomean of 2.4x (1.7x) on
Intel (AMD) CPUs. Under POCL, gaussian and sc had seg-faults
(marked by striped bars).

For Intel CPUs, POCL yields notable performance slowdowns
in most programs, with speedups only for lbm, sgemm and bp, out-
performing Intel SDK, on average. POCL executes the work-items
in a work-group in scalar mode, while Intel SDK vectorizes them
(Figure 5(c)). For AMD CPUs, POCL adopts a similar optimization
strategy as AMD SDK, resulting in more speedups outperforming
AMD SDK, on average (due to mainly the performance gain for
b+tree by POCL).

Unlike POCL, which focuses on optimizing kernel codes only,
PPOpenCL is a source-to-source compiler by taking advantage of
a platform-specific OpenCL implementation to avoid performance
drops. PPOpenCL outperforms POCL in 12 (10) programs on Intel

CPUs (AMD CPUs), since it optimizes both host and kernel thread
codes simultaneously. In the case of b+tree, POCL significantly
outperforms PPOpenCL on AMD CPUs. By applying aggressive
loop unrolling, POCL has successfully vectorized the operations
on complex data structures involving branch instructions across
256 adjacent work-items. However, PPOpenCL failed in its vector-
ization attempt due to the lack of a powerful dependence analysis
for complex data structures. Similarly, AMD SDK (as in the case of
Intel SDK) did not succeed here, either.
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Figure 16: Combining PPOpenCL and POCL.

We can obtain the best of the two worlds by combining
PPOpenCL and POCL. For the benchmarks at which both achieve
positive speedups (Figure 16), PPOpenCL + POCL is superior over
either alone, as PPOpenCL applies kernel optimizations that re-
quire the host code information and POCL applies kernel optimiza-
tions during code generation.

4.4 PPOpenCL vs. OpenACC
OpenACC [27, 30, 31] is another cross-platform programming
framework, which is less performance-competitive than OpenCL
but more performance portable. We make this comparison using
reduction, with its OpenACCversion from NAS_SHOC_OpenACC [14]
and its OpenCL version from SHOC [6], on Intel CPUs, AMD CPUs
andNVIDIAGPUs.The PGI [33] tool chains for OpenACC are used
on these platforms (with OpenACC as the baseline).

Figure 17 gives our results. PPOpenCL outperforms OpenACC
by 1.02x on Intel CPUs, 1.12x on AMDCPUs, and 1.19x on NVIDIA
GPUs.There are significant performance differences onAMDCPUs.
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OpenCL is significantly slower on AMD CPUs than on the other
two platforms.The OpenCL version utilizes a coalesced layout and
launches a large number of work-items, resulting in poor cache uti-
lization and excessive runtime overhead on AMD CPUs. By apply-
ing data layout optimization and holistic vectorization, PPOpenCL
achieves a speedup of 16.5x over OpenCL.

5 RELATEDWORK
Optimization for Multiple Accelerators. There are many efforts

on optimizing OpenCL/CUDA programs on GPUs [3–5, 12, 15, 35,
36, 48, 51], CPUs [17, 20], and FPGAs [9, 18, 50, 59], which are
mostly restricted to one accelerator. The three optimizations sup-
ported by PPOpenCL are also considered elsewhere [24, 25, 38], ex-
cept that PPOpenCL provides a generic compiler solution to facili-
tate host-kernel fused optimizations. Kernel fusion [10, 49], which
is the closest to our work, fuses kernels to improve performance
rather than its portability. Others [23, 53] optimize OpenCL/CUDA
programs for multiple NVIDIA and AMD GPUs. In contrast,
PPOpenCL optimizes both host and kernel thread codes simulta-
neously to improve performance portability bymodeling explicitly
the platform execution order across the work-items.

Extended Control/Data Flows. There are some efforts on construct-
ing inter-thread control/data flows [1, 42, 55] to facilitate paral-
lelization, communication optimization, or task scheduling. They
focus on inter-thread control and data dependencies. In contrast,
PPOpenCL focuses on incorporating platform-specific execution
orders into WII-CFG.

Performance Portability for Heterogeneous Architectures. Some ef-
forts exist for improving performance portability for specific appli-
cations [37, 45] or designing programming languages to support
different optimizations on different platforms [2, 44]. They focus
on architectural differences while PPOpenCL stresses on modeling
platform-specific execution orders for the work-items in a work-
group.

POCL [16] is a performance-portable OpenCL implementation.
Its core is a kernel compiler that can exploit the data parallelism in
OpenCL programs on multiple platforms with different parallel ex-
ecution models. HPVM [43] is a program representation designed
to enable cross-platform performance portability for parallel hard-
ware, by virtualizing the parallel execution behavior and the par-
allel hardware ISAs. It treats work-items as nodes in a data flow
graph and handles the work-items from each kernel uniformly for

optimization purposes. Like POCL and HPVM, PPOpenCL consid-
ers the multiple work-items in a work-group when applying op-
timizations to improve performance portability. Unlike POCL and
HPVM, however, PPOpenCL can expose more optimization oppor-
tunities by performing its optimizations in both the host and kernel
thread codes simultaneously.

OpenACC [27, 30, 31] is another cross-platform heterogeneous
programming model, which is less performance-competitive but
more performance portable than OpenCL [40]. An OpenACC pro-
gram is written as a serial C/Fortran program annotated with prag-
mas, with no separate host and kernel programs as in an
OpenCL/CUDA program. Such a unified programming model and
PPOpenCLwill benefit from each other in several ways. First, a uni-
fied programming model will simplify our analysis in identifying
aliased host and kernel objects, since the data are unified. Second,
a unified programming model provides more opportunities for ap-
plying a more precise alias analysis to the unified code, before the
host and code codes are separated. Finally, our approach can apply
to a unified programming model, by treating each parallel-loop as
a kernel. We can continue to use WII functions to specify the exe-
cution orders of iterations in parallel-loops, thread re-organization
and holistic vectorization to optimize parallel-loops, and data lay-
out optimizations to improve locality across the boundary of prag-
mas.

6 CONCLUSION
In this paper, we have introduced a source-to-source OpenCL com-
piler, PPOpenCL, to improve cross-platform performance portabil-
ity for OpenCL programs, by fusing the host and kernel thread
codes of an OpenCL program together. We have implemented
PPOpenCL in Clang and conducted a fairly extensive evaluation
in terms of a set of commonly used OpenCL benchmarks on seven
representative platforms. Our experimental results demonstrate that
PPOpenCL improves the state of the art by delivering better portable
performance.

ACKNOWLEDGMENTS
We thank all the reviewers for their valuable comments and sug-
gestions. This work was supported in part by the National Key Re-
search and Development Program of China (2017YFB0202002), the
National Natural Science Foundation of China (61802368, 61521092,
61432016, 61432018, 61332009, 61702485, 61872043), and an Aus-
tralian Research Council (ARC) Grant DP180104069.

REFERENCES
[1] Timothy G. Armstrong, Justin M. Wozniak, Michael Wilde, and Ian T. Foster.

2014. Compiler Techniques for Massively Scalable Implicit Task Parallelism. In
Proceedings of the 26th International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’14). IEEE, New Orleans, LA, USA, 299–
310.

[2] Li-Wen Chang, Izzat El Hajj, Christopher Rodrigues, Juan Gómez-Luna, and
Wen-mei Hwu. 2016. Efficient Kernel Synthesis for Performance Portable Pro-
gramming. In Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’16). IEEE, Taipei, Taiwan, 12:1–12:13.

[3] Huimin Cui, Lei Wang, Jingling Xue, Yang Yang, and Xiaobing Feng. 2011. Auto-
matic Library Generation for BLAS3 on GPUs. In 25th IEEE International Sympo-
sium on Parallel and Distributed Processing, IPDPS 2011, Anchorage, Alaska, USA,
16-20 May, 2011 - Conference Proceedings. IEEE, 255–265.

14



CC ’19, February 16–17, 2019, Washington, DC, USA Y. Liu, L. Huang, M. Wu, H. Cui, F. Lv, X. Feng, and J. Xue

[4] Huimin Cui, Jingling Xue, Lei Wang, Yang Yang, Xiaobing Feng, and Dongrui
Fan. 2012. Extendable pattern-oriented optimization directives. ACM Transac-
tions on Architecture and Code Optimization 9, 3 (2012), 14.

[5] Huimin Cui, Qing Yi, Jingling Xue, and Xiaobing Feng. 2013. Layout-Oblivious
Compiler Optimization for Matrix Computations. Acm Transactions on Architec-
ture and Code Optimization 9, 4 (2013), 1–20.

[6] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. 2010. The Scalable
Heterogeneous Computing (SHOC) Benchmark Suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units (GPGPU
’10). ACM, Pittsburgh, Pennsylvania, USA, 63–74.

[7] Chen Ding and Yutao Zhong. 2003. Predicting whole-program locality through
reuse distance analysis. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI ’03). ACM, San Diego,
California, USA, 245–257.

[8] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and
Jack Dongarra. 2012. From CUDA to OpenCL: Towards a Performance-portable
Solution for Multi-platform GPU Programming. Parallel Computing. 38, 8 (Aug.
2012), 391–407.

[9] Jeff Fifield, Ronan Keryell, Hervé Ratigner, Henry Styles, and Jim Wu. 2016. Op-
timizing OpenCL Applications on Xilinx FPGA. In Proceedings of the 4th Interna-
tional Workshop on OpenCL (IWOCL ’16). ACM, Vienna, Austria, 5:1–5:2.

[10] Jiri Filipovic, Matus Madzin, Jan Fousek, and Ludek Matyska. 2015. Optimizing
CUDA Code By Kernel Fusion:Application on BLAS. The Journal of Supercom-
puting 71, 10 (2015), 3934–3957.

[11] Haohuan Fu, Junfeng Liao, Jinzhe Yang, Lanning Wang, et al. 2016. The Sunway
TaihuLight supercomputer: system and applications. SCIENCE CHINA Informa-
tion Sciences 59, 7 (2016), 072001:1–072001:16.

[12] Xiang Gong, Zhongliang Chen, Amir Kavyan Ziabari, Rafael Ubal, and David
Kaeli. 2017. TwinKernels: An ExecutionModel to ImproveGPUHardware Sched-
uling at Compile Time. In Proceedings of the 2017 International Symposium on
Code Generation and Optimization (CGO ’17). IEEE, Austin, USA, 39–49.

[13] Khronos Group. 2018. OpenCL Overview. https://www.khronos.org/opencl/
[14] OpenACC User Group. 2017. NAS SHOC OpenACC 2.5. https:

//github.com/OpenACCUserGroup/openacc-users-group/tree/master/
Contributed_Sample_Codes/NAS_SHOC_OpenACC_2.5

[15] Wenting He, Huimin Cui, Binbin Lu, Jiacheng Zhao, Shengmei Li, Gong Ruan,
Jingling Xue, Xiaobing Feng, Wensen Yang, and Youliang Yan. 2015. Hadoop+:
Modeling and Evaluating the Heterogeneity for MapReduce Applications in Het-
erogeneous Clusters. In Proceedings of the 29th ACM on International Conference
on Supercomputing, ICS’15, Newport Beach/Irvine, CA, USA, June 08 - 11, 2015.
ACM, 143–153.

[16] Pekka Jääskeläinen, Carlos Sánchez Lama, Erik Schnetter, Kalle Raiskila, Jarmo
Takala, andHeikki Berg. 2015. Pocl: A Performance-Portable OpenCL Implemen-
tation. International Journal of Parallel Programming. 43, 5 (Oct. 2015), 752–785.

[17] Zhen Jia, Aleksandar Zlateski, Fredo Durand, and Kai Li. 2018. Optimizing N-
dimensional, Winograd-based Convolution for Manycore CPUs. In Proceedings
of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’18). ACM, Vienna, Austria, 109–123.

[18] Zheming Jin and Hal Finkel. 2018. Performance-oriented Optimizations for
OpenCL Streaming Kernels on the FPGA. In Proceedings of the International
Workshop on OpenCL (IWOCL ’18). ACM, Oxford, United Kingdom, 1:1–1:8.

[19] Guido Juckeland, William C. Brantley, Sunita Chandrasekaran, et al. 2014. SPEC
ACCEL: A Standard Application Suite for Measuring Hardware Accelerator Per-
formance. In Proceedings of 5th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS’14).
Springer, New Orleans, LA, USA, 46–67.

[20] Hee-Seok Kim, Izzat El Hajj, John Stratton, Steven Lumetta, and Wen-Mei Hwu.
2015. Locality-centric Thread Scheduling for Bulk-synchronous Programming
Models on CPU Architectures. In Proceedings of the 13th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO ’15). IEEE/ACM,
San Francisco, California, 257–268.

[21] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level Par-
allelism with Multimedia Instruction Sets. In Proceedings of the ACM SIGPLAN
2000 Conference on Programming Language Design and Implementation (PLDI ’00).
ACM, New York, NY, USA, 145–156.

[22] Jaejin Lee, Jungwon Kim, Sangmin Seo, Seungkyun Kim, et al. 2010. An OpenCL
Framework for Heterogeneous Multicores with Local Memory. In Proceedings
of the 19th ACM/IEEE/IFIP International Conference on Parallel Architectures and
Compilation Techniques (PACT ’10). IEEE, Vienna, Austria, 193–204.

[23] Alberto Magni, Christophe Dubach, and Michael O’Boyle. 2014. Automatic Op-
timization of Thread-coarsening for Graphics Processors. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation (PACT
’14). ACM, Edmonton, AB, Canada, 455–466.

[24] Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. 2013. A Large-
scale Cross-architecture Evaluation of Thread-coarsening. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC ’13). ACM, Denver, Colorado, USA, Article 11, 11 pages.

[25] Deepak Majeti, Kuldeep S. Meel, Rajkishore Barik, and Vivek Sarkar. 2016. Au-
tomatic data layout generation and kernel mapping for CPU+GPU architectures.
In Proceedings of the 21st International Conference on Compiler Construction (CC
’16). ACM, Barcelona, Spain, 240–250.

[26] Kathryn S Mckinley, Steve Carr, and Chauwen Tseng. 1996. Improving Data
Locality with Loop Transformations. ACM Transactions on Programming Lan-
guages and Systems 18, 4 (1996), 424–453.

[27] Douglas Miles, David Norton, and Michael Wolfe. 2014. Performance Portability
and OpenACC. In Proceedings of Cray Users Group Meeting (CUG ’14). Lugano,
Switzerland, 1–8.

[28] NVIDIA. 2018. CUDA C Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html

[29] NVIDIA. 2018. NVIDIA OpenCL SDK Code Samples. https://developer.nvidia.
com/opencl

[30] NVIDIA. 2018. Performance Portability from GPUs to CPUs with OpenACC.
https://devblogs.nvidia.com/performance-portability-gpus-cpus-openacc/

[31] OpenACC. 2018. OpenACC Specification. https://www.openacc.org/
specification

[32] S. J. Pennycook, S. D. Hammond, S. A. Wright, J. A. Herdman, I. Miller, and S. A.
Jarvis. 2013. An Investigation of the Performance Portability of OpenCL. Journal
of Parallel and Distributed Computing. 73, 11 (Nov. 2013), 1439–1450.

[33] PGI. 2018. PGI Accelerator Compilers with OpenACC Directives. https://www.
pgroup.com/resources/accel.htm

[34] James Price and Simon McIntosh-Smith. 2017. Analyzing and Improving Perfor-
mance Portability of OpenCL Applications via Auto-tuning. In Proceedings of the
5th International Workshop on OpenCL (IWOCL ’2017). ACM, Toronto, Canada,
Article 14, 4 pages.

[35] Prashant Singh Rawat, Changwan Hong, Mahesh Ravishankar, Vinod Grover,
Louis-Noel Pouchet, Atanas Rountev, and P. Sadayappan. 2016. Resource Con-
scious Reuse-Driven Tiling for GPUs. In Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation (PACT ’16). ACM, Haifa, Is-
rael, 99–111.

[36] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam, Louis-Noël
Pouchet, Atanas Rountev, and P. Sadayappan. 2018. Register optimizations for
stencils on GPUs. In Proceedings of the 23rd ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP ’18). ACM, Vienna, Austria,
168–182.

[37] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe Dubach. 2016.
Performance Portable GPU Code Generation for Matrix Multiplication. In Pro-
ceedings of the 9th Annual Workshop on General Purpose Processing Using Graph-
ics Processing Unit (GPGPU ’16). ACM, Barcelona, Spain, 22–31.

[38] Ingo Wald Roland Leiba, Sebastian Hack. 2012. Extending a C-like Language for
Portable SIMD Programming. In Proceedings of the 17th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP’12). ACM, New
Orleans, Louisiana, USA, 65–74.

[39] Karl Rupp, Philippe Tillet, Florian Rudolf, Josef Weinbub, Tibor Grasser, and
Ansgar Jüngel. 2014. Performance Portability Study of Linear Algebra Kernels
in OpenCL. In Proceedings of the International Workshop on OpenCL (IWOCL ’14).
ACM, Bristol, UK, Article 8, 11 pages.

[40] Amit Sabne, Putt Sakdhnagool, Seyong Lee, and Jeffrey S. Vetter. 2014. Eval-
uating Performance Portability of OpenACC. In Proceedings of 27th Interna-
tional Workshop on Languages and Compilers for Parallel Computing (LCPC ’14).
Springer, Hillsboro, OR, USA, 51–66.

[41] Sangmin Seo, Jun Lee, Gangwon Jo, and Jaejin Lee. 2013. Automatic OpenCL
work-group size selection for multicore CPUs. In Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT
’13). IEEE, Edinburgh, UK, 387–397.

[42] Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and Alex Aiken.
2015. Regent: a high-productivity programming language for HPC with logi-
cal regions. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’15). ACM, Austin, TX, USA,
81:1–81:12.

[43] Prakalp Srivastava, Maria Kotsifakou, and Vikram S. Adve. 2016. HPVM: A
Portable Virtual Instruction Set for Heterogeneous Parallel Systems. CoRR
abs/1611.00860 (2016). arXiv:1611.00860

[44] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015.
Generating performance portable code using rewrite rules: from high-level func-
tional expressions to high-performance OpenCL code. In Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming (ICFP ’15).
ACM, Vancouver, BC, Canada, 205–217.

[45] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2016. Matrix mul-
tiplication beyond auto-tuning: rewrite-based GPU code generation. In 2016 In-
ternational Conference on Compilers, Architectures and Synthesis for Embedded
Systems (CASES ’16). ACM, Pittsburgh, Pennsylvania, USA, 15:1–15:10.

[46] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng D. Liu, andW.W. Hwu. 2012. Parboil: A Revised Benchmark
Suite for Scientific and Commercial Throughput Computing. Technical Report.
University of Illinois at Urbana-Champaign.

15

https://www.khronos.org/opencl/
https://github.com/OpenACCUserGroup/openacc-users-group/tree/master/Contributed_Sample_Codes/NAS_SHOC_OpenACC_2.5
https://github.com/OpenACCUserGroup/openacc-users-group/tree/master/Contributed_Sample_Codes/NAS_SHOC_OpenACC_2.5
https://github.com/OpenACCUserGroup/openacc-users-group/tree/master/Contributed_Sample_Codes/NAS_SHOC_OpenACC_2.5
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/opencl
https://developer.nvidia.com/opencl
https://devblogs.nvidia.com/performance-portability-gpus-cpus-openacc/
https://www.openacc.org/specification
https://www.openacc.org/specification
https://www.pgroup.com/resources/accel.htm
https://www.pgroup.com/resources/accel.htm
http://arxiv.org/abs/1611.00860


PPOpenCL CC ’19, February 16–17, 2019, Washington, DC, USA

[47] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, Barcelona, Spain, March 12-18, 2016. 265–266.

[48] Ben Taylor, Vicent Sanz Marco, and Zheng Wang. 2017. Adaptive Optimization
for OpenCL Programs on Embedded Heterogeneous Systems. In Proceedings of
the 18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES 2017). ACM, Barcelona, Spain, 11–20.

[49] Mohamed Wahib and Naoya Maruyama. 2014. Scalable Kernel Fusion for
Memory-Bound GPU Applications. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC ’14).
IEEE, New Orleans, LA, USA, 191–202.

[50] Dennis Weller, Fabian Oboril, Dimitar Lukarski, Juergen Becker, and Mehdi
Tahoori. 2017. Energy Efficient Scientific Computing on FPGAs Using OpenCL.
In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’17). ACM, Monterey, California, USA, 247–
256.

[51] Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary,
Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, and Robert Hundt.
2016. Gpucc: An Open-source GPGPU Compiler. In Proceedings of the 2016 In-
ternational Symposium on Code Generation and Optimization (CGO ’16). ACM,
Barcelona, Spain, 105–116.

[52] Jingling Xue and Jens Knoop. 2006. A Fresh Look at PRE as a Maximum Flow
Problem. In Compiler Construction, 15th International Conference, CC 2006, Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 30-31, 2006, Proceedings. 139–154.

[53] Yi Yang, Ping Xiang, Jingfei Kong, Mike Mantor, and Huiyang Zhou. 2012. A
Unified Optimizing Compiler Framework for Different GPGPU Architectures.
ACM Transactions on Architecture and Code Optimization. 9, 2, Article 9 (June
2012), 33 pages.

[54] Yao Zhang, Mark Sinclair II, and Andrew A. Chien. 2013. Improving Perfor-
mance Portability in OpenCL Programs. In Proceedings of the 28th International
Supercomputing Conference (ISC ’13). Springer, Leipzig, Germany, 136–150.

[55] Jisheng Zhao, Jun Shirako, V. Krishna Nandivada, and Vivek Sarkar. 2010. Re-
ducing task creation and termination overhead in explicitly parallel programs.
In Proceedings of the 19th International Conference on Parallel Architecture and
Compilation Techniques (PACT ’10). ACM, Vienna, Austria, 169–180.

[56] Hao Zhou and Jingling Xue. 2016. A Compiler Approach for Exploiting Partial
SIMD Parallelism. ACM Trans. Archit. Code Optim. 13, 1, Article 11 (March 2016),
26 pages. https://doi.org/10.1145/2886101

[57] Hao Zhou and Jingling Xue. 2016. Exploiting Mixed SIMD Parallelism by Re-
ducing Data Reorganization Overhead. In Proceedings of the 2016 International
Symposium on Code Generation and Optimization (CGO ’16). ACM, New York,
NY, USA, 59–69. https://doi.org/10.1145/2854038.2854054

[58] Hans Zima and Barbara Chapman. 1991. Supercompilers for Parallel and Vector
Computers. ACM, New York, NY, USA.

[59] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, Motohiko Matsuda, and
Satoshi Matsuoka. 2016. Evaluating and optimizing OpenCL kernels for high
performance computing with FPGAs. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC ’16).
IEEE, Salt Lake City, UT, USA, 409–420.

16

https://doi.org/10.1145/2886101
https://doi.org/10.1145/2854038.2854054

	Abstract
	1 Introduction
	2 Motivation
	3 The PPOpenCL Framework
	3.1 Control-Flow Analysis
	3.2 Data Flow Analysis
	3.3 Performance-Enhancing Optimizations

	4 Evaluation
	4.1 Overall Performance Improvements
	4.2 Individual Optimizations
	4.3 PPOpenCL vs. POCL
	4.4 PPOpenCL vs. OpenACC

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

