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ABSTRACT
Quantum perturbation theory is pivotal in determining the critical

physical properties of materials. The first-principles computations

of these properties have yielded profound and quantitative insights

in diverse domains of chemistry and physics. In this work, we

propose a portable and scalable OpenCL implementation for quan-

tum perturbation theory, which can be generalized across various

high-performance computing (HPC) systems. Optimal portability

is realized through the utilization of a cross-platform unified in-

terface and a collection of performance-portable heterogeneous

optimizations. Exceptional scalability is attained by addressing

major constraints on memory and communication, employing a

∗
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SC ’23, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0109-2/23/11. . . $15.00

https://doi.org/10.1145/3581784.3607085

locality-enhancing task mapping strategy and a packed hierarchical

collective communication scheme. Experiments on two advanced

supercomputers demonstrate that our implementation exhibits re-

markably performance on various material systems, scaling the

system to 200,000 atoms with all-electron precision. This research

enables all-electron quantum perturbation simulations on substan-

tially larger molecular scales, with a potentially significant impact

on progress in material sciences.
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1 INTRODUCTION
Amaterial’s properties are generally determined by how it reacts to

external perturbations. The quantum perturbation theory [1, 2] uses

a mathematical framework to calculate the response of the quantum

system and can be used to determine how the system will interact

with the environment. As a result, quantum perturbation theory

based calculations play a critical role in our comprehension of the

physical properties ofmaterials. For example, quantum perturbation

theory offers a framework for unraveling the intricate mechanisms

underlying superconductivity [3]. This theory can also gauge the

mobility of the (electron or hole) carriers in the material [4]. Most

strikingly, it provides a direct link between the theoretical and the

experimentally measured physical spectrum [5].

Although quantum perturbation theory can precisely calculate

the properties of molecules and predict their behavior, it has been

traditionally limited to small systems and remains challenging for

large systems consisting of up to thousands of atoms. Therefore,

a highly scalable quantum perturbation computational method is

increasingly necessary for efficient calculations. On the other hand,

even the supercomputers can be employed for quantum pertur-

bation calculations, the hardware architecture of different super-

computers varies a lot (e.g. various GPUs or other heterogeneous

many-core architectures), making portability between these diverse

architectures of utmost importance. Therefore, a highly efficient

portable and scalable first-principles code for quantum perturbation

calculation on various modern heterogeneous many-core super-

computers is urgently needed. Here in this work, we re-designed

the quantum perturbation calculations within the all-electron full-

potential framework [5–7] for the heterogeneous many-core super-

computer, with a portable and scalable OpenCL implementation to

address the above challenges, and our major innovations include:

• A portable quantum perturbation implementation has been

developed using OpenCL, i.e., a cross-platform unified pro-

gramming framework, to enable efficient all-electron all-

potential simulations across various supercomputers.

• Major scaling limitations in quantum perturbation has been

removed, by a locality-enhancing task mapping strategy. It

enables neighbouring atoms to be simulated in the same

MPI process, leading to significantly reduced per-process

memory consumption and more efficient memory accesses.

• Efficient collective communication has been enabled, by

introducing a packed hierarchical communication scheme,

which reduces the total number of collective communica-

tions by packing several of them together, and accelerates

each communication by applying a hierarchical approach

for inter-node and intra-node data synthesizing.

• A set of performance-portable OpenCL optimizations have

been implemented to improve the efficiencies of compute

units and memory sub-system for various heterogeneous

processors, by reordering OpenCL kernel invocations, mem-

ory accesses and arithmetic operations.

• We have evaluated our OpenCL-accelerated quantum per-

turbation simulation on two advanced supercomputers, and

results show that our implementation exhibits remarkably

performance on various material systems, enabling the sys-

tem scale to 200,000 atoms with all-electron precision.

Figure 1: Schematic overview of first-principles quantum
perturbation theory.

The optimization methods proposed in this work could be ex-

tended to other quantum perturbation code with the same compu-

tational characteristics; hence, they will be broadly beneficial to the

quantum chemistry, biological, and material science communities.

2 BACKGROUND
2.1 The first-principles quantum perturbation

theory
Firstly, we provide a brief summary of the first-principles quantum

perturbation method. In the following chapters, we use subscripts

𝑖, 𝑗 to denote occupied quantummolecular orbitals,𝑎 for unoccupied

(virtual) quantum molecular orbitals, and 𝑝, 𝑞 for the entire set of

quantum molecular orbitals. 𝜇, 𝜈 represent atomic basis sets. In

density function theory (DFT), the total-energy functional is given

as

𝐸KS = 𝑇s [𝑛] + 𝐸ext [𝑛] + 𝐸H [𝑛] + 𝐸xc [𝑛] + 𝐸nuc-nuc (1)

where 𝑛(r) is the electron density, 𝑇s denotes the kinetic energy of

non-interacting electrons, 𝐸ext represents external energy result-

ing from electron-nuclear attraction, 𝐸H refers to Hartree energy,

𝐸xc denotes exchange-correlation energy, and 𝐸nuc-nuc refers to

the nucleus-nucleus repulsion energy. The ground state electron

density 𝑛0 (r) is obtained by variationally minimizing Eq. (1) under

the constraint that the number of electrons 𝑁𝑒 is conserved. This

yields the Kohn-Sham single particle equations

ˆℎKS𝜓𝑝 =
[
𝑡s + 𝑣ext (𝑟 ) + 𝑣H + 𝑣xc

]
𝜓𝑝 = 𝜖𝑝𝜓𝑝 (2)

for the Kohn-Sham Hamiltonian
ˆℎKS, where 𝑡s denotes the kinetic

energy operator, 𝑣ext the external potential, 𝑣𝐻 the Hartree po-

tential, and 𝑣𝑥𝑐 the exchange-correlation potential. Solving Eq. (2)

yields the Kohn-Sham single particle states𝜓𝑝 and their eigenener-

gies 𝜖𝑝 , with𝜓𝑝 determining the electron density via

𝑛(r) =
∑︁
𝑖

𝑓𝑖 |𝜓𝑖 |2 (3)

in which 𝑓𝑖 denotes the Fermi-Dirac distribution function. In order

to solve Eq. (2) in numerical implementations, the Kohn-Sham states

are expanded in a finite basis set 𝜒𝜇 (r)

𝜓𝑝 (r) =
∑︁
𝜇

𝐶𝜇𝑝 𝜒𝑢𝜇 (r) (4)
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with the expansion coefficients 𝐶𝜇𝑝 . This expansion leads to a gen-

eralized eigenvalue problem for Eq. (2), which is expressed as∑︁
𝜈

𝐻𝜇𝜈𝐶𝜈𝑝 = 𝜖𝑝

∑︁
𝜈

𝑆𝜇𝜈𝐶𝜈𝑝 (5)

where 𝐻𝜇𝜈 and 𝑆𝜇𝜈 are the Hamiltonian and overlap matrices, re-

spectively. These matrices are obtained using the bra-ket notation

⟨.|.⟩ for the inner product in Hilbert space, where 𝐻𝜇𝜈 denotes the

elements ⟨𝜒𝜇 | ˆℎKS |𝜒𝜈⟩ of the Hamiltonian matrix and 𝑆𝜇𝜈 denotes

the elements ⟨𝜒𝜇 |𝜒𝜈 ⟩ of the overlap matrix. The density matrix for

the ground state is obtained using the basis set representation as

𝑃𝜇𝜈 =
∑︁
𝑖

𝑓𝑖𝐶𝜇𝑖𝐶𝜈𝑖 (6)

where 𝑓𝑖 are the occupation numbers. As shown in Figure 1, the

first step in the quantum perturbation self-consistency cycle is

to calculate the response of the density matrix using the given

expansion coefficients 𝐶 and 𝐶 (1) as

𝑃
(1)
𝜇𝜈 =

∑︁
𝑖

𝑓𝑖

(
𝐶
(1)
𝜇𝑖

𝐶𝜈𝑖 +𝐶𝜇𝑖𝐶
(1)
𝜈𝑖

)
(7)

Using the density matrix formalism, we can then obtain the re-

sponse of the electronic density as

𝑛 (1) (r) =
∑︁
𝜇,𝜈

𝑃
(1)
𝜇,𝜈 𝜒𝜇 (r)𝜒𝜈 (r) (8)

and the response of the Hartree potential as

𝑣
(1)
𝐻
(r) =

∫
𝑛 (1) (r)
|r − r′ | 𝑑r

′
(9)

and the corresponding total electrostatic potential 𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r) =

𝑣
(1)
ext
+ 𝑣 (1)

H
, then we get the response of the Kohn-Sham Hamil-

tonian matrix,

𝐻
(1)
𝜇,𝜈 =

(∫
𝜒𝜇 ˆℎ
(1)
KS

𝜒𝜈 (r)𝑑r
)

(10)

Here
ˆℎ
(1)
KS

denotes the response of the Hamiltonian operator un-

der the homogeneous external electrical field perturbation with

strength 𝜉 along coordinate direction J.

ˆℎ
(1)
KS

=
𝑑 ( ˆℎKS + ˆℎE)

𝑑𝜉 𝐽
= 𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 + 𝑣

(1)
𝑥𝑐 − 𝑟 𝐽 (11)

In the case of the LDA functional, the exchange-correlation energy

can be written as 𝐸𝑥𝑐 =
∫
𝑓𝑥𝑐 (𝑛(r))𝑑r. Evaluating the functional

derivative in the latter term yields simply

𝑣
(1)
𝑥𝑐 [𝑛(r)] =

𝜕2 𝑓𝑥𝑐

𝜕𝑛𝜕𝑛
𝑛 (1) (r) = 𝜕𝑣𝑥𝑐 [𝑛(r)]

𝜕𝑛(r) 𝑛 (1) (r) (12)

In turn, all these ingredients then allow to set up the Sternheimer

equation [5, 7], the solution of which allows to update the response

of the expansion coefficients 𝐶 (1) . We iteratively restart the quan-

tum perturbation loop until self-consistency is reached, i.e., until the

changes in𝐶 (1) become smaller than a user-given threshold. In the

last steps, the polarizability and dielectric constants are computed.

𝛼𝐼 𝐽 =
𝜕𝜇𝐼

𝜕𝜉 𝐽
=

∫
𝑟𝐼
𝜕𝑛(r)
𝜕𝜉 𝐽

𝑑r (13)

2.2 Current state of the art
First-principles calculations necessitate the representation of single-

particle wave functions through the linear combination of basis

functions, resulting in a matrix equation that requires numerical

solutions. Various types of basis sets are utilized in different com-

putational codes. For instance, plane wave (PWs) basis functions

are employed in codes such as Quantum ESPRESSO [8], VASP [9],

ABINIT [10], and Qbox [11]. Additionally, uniform real-space grid

basis sets are utilized in Octopus[12], and finite elements is used

in DFT-FE [13]. Although these basis sets can achieve systematic

convergence, their computational requirements for all-electron

calculations are exceptionally high. To address this issue, pseudopo-

tential or projector augmented wave methods are introduced when

utilizing the aforementioned basis sets. Despite the careful construc-

tion of pseudopotentials to ensure consistency between valence

electrons and all-electron calculations, core electron information re-

mains unavailable[14]. On the other hand, all-electron approaches

based on atomic orbitals can account for both core and valence

electrons, offering higher precision compared to pseudopotential

methods. Examples of all-electron software include Gaussian [15]

and CRYSTAL [16], which employ Gaussian atomic orbital methods,

as well as DMol [17] and FHI-aims [6], which utilize the all-electron

numerical atomic orbital basis set. So far, the all-electron quantum

perturbation studies of physical properties have been limited in

small systems because of the following reasons: (1) For all-electron

full-potential calculation, the load balancing for non-uniform grid

points is needed; (2) The location-priority algorithm is needed to

enhance computational locality and the scalability. (3) Cooperative

computing challenges for irregular computations on heterogeneous

computing resources. (4) Memory challenges stemming from large-

scale matrix computations. In summary, the current quantum per-

turbation software is limited in terms of accuracy, computational

efficiency, and scalability, severely constraining quantum pertur-

bation calculations on large-scale supercomputing systems and

forming a critical bottleneck in simulating the physical properties

of realistic systems.

2.3 Algorithmic Challenges
Designing an efficient quantum perturbation implementation that

is capable of exploiting various accelerators on supercomputers,

involves major challenges on both scalability and portability.

The scalability challenge. Quantum perturbation simulation

requires huge memory consumption and frequent communication,

to keep and update data that involve all atoms (e.g., the Hamiltonian

matrix obtained by Equation 10), making it difficult to scale among

a large number of MPI processes. This challenge is overcome in

this work by a locality-enhancing task mapping strategy and a

packed hierarchical collective communication scheme, which will

be introduced in detail by Section 3.

The portability challenge. Making a single-source code imple-

mentation run efficiently across various supercomputers is demand-

ing yet challenging, since modern supercomputers are typically

equipped with various heterogeneous accelerators, favoring differ-

ent programming languages, e.g., Nvidia-GPU-accelerated super-

compupters favor CUDA codes, whereas Sunway favors customized

Athread codes [18–20]. This challenge is overcome in this work by
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Legend
Grid points of atom H
Grid points of atom O
Batches

Figure 2: 2D illustration of discretized grids constructed for
parallelization in a water molecule (H2O), with non-uniform
grid points generated and batches (of grid points) formed.

implementing each MPI process with a common OpenCL interface

and performing massive optimizations, which will be introduced

in detail by Section 4.

3 INNOVATIONS ON SCALABILITY
Our quantum perturbation implementation improves its scalability

among multiple MPI processes, by (1) a locality-enhancing task

mapping strategy that improves intra-process locality among atoms

(Section 3.1), and (2) a packed hierarchical collective communication

scheme that reduces both the number of communications and the

cost of each communication (Section 3.2).

3.1 Locality-Enhancing Task Mapping
To harvest the convenience of being parallelized, discretized three-

dimensional physical grids have been constructed for perturbation

property calculations in Equations (8) (9) (also shown in Figure 1),

generating a set of non-uniform radial spherical grid points cen-

tered on the geometric coordinates of the nucleus for each atom, to

discretize its all-electron atomic orbitals [21, 22]. All points in those

discretized grids are further divided into disjoint batches based on

their spatial locations, with each batch formed with a grid-adapted

cut-plane method [23] and then mapped to a certain MPI process

for execution. Figure 2 examplifies the discretized grids using a

3-atom system of H2O, with each dot representing a grid point and

each segmented area representing a batch.

3.1.1 Existing Load-Balancing Strategy and Its Scaling Obstacle.
When determining on which MPI process a batch (of grid points)

will be executed, a load-balancing strategy [6] has been adopted

to deal with variable-sized batches (typically consisting of 100-300

grid points) caused by the non-uniform spatial locations of grid

points. The load-balancing approach would assign the new batch, to

the MPI process that currently owns the least grid points, without

checking to which atoms the grid points in the new batch belong. As

a result, grid points belonging to the same atom, may be scattered to

a large set of MPI processes, as shown in the first row of Figure 3(a).

At the same time, each MPI process may be assigned with grid
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Figure 3: Main differences of two task mapping strategies.

points belonging to a large set of delocalized atoms, as shown in

the second row of Figure 3(a).

Memory explosion led by large sparse Hamiltonianmatrix
is the major scaling obstacle met by letting an MPI process deal

with delocalized batches, which may belong to a large set of atoms

located far from each other. In this case, in the phases of calculating

response density (𝑛 (1) (r)) (Equation 8) and response Hamiltonian

(𝐻
(1)
𝜇,𝜈 ) (Equation 10), huge storage space would be required in this

MPI process, for storing a large Hamiltonian matrix. It is a square

matrix which uses 𝑁𝑏 × 𝑁𝑏 elements with 𝑁𝑏 denoting the total

number of orbits for all atoms involved, which could be extremely

huge when this MPI process deals with a large number of atoms,

since each atom owns at least one orbit. For example, for a 49-atom

system as shown in Figure 8(b), this number of orbitals is𝑁𝑏 = 1359,

resulting in a 1359 × 1359 Hamiltonian matrix. In addition, it’s

typically sparse, since the atoms can only have interactions with

its neighbor atoms. As shown in the third row of Figure 3(a), an

MPI process may be assigned with grid points belonging to a large

set of delocalized atoms located far from each other, resulting in

a Hamiltonian matrix that is both large (due to the large number

of atoms involved) and sparse (due to their far-away locations),

to be kept in its memory. In addition, it’s usually stored using a

compressed format (e.g., compressed sparse row (CSR) format),

leading to inefficiency when accessing its elements, i.e., multiple

memory accesses are required to fetch a single element in it.
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3.1.2 Proposed Locality-Enhancing Strategy and Its Benefits. To
prevent memory explosion for storing the Hamiltonian matrix, our

key insight is to gather grid points belonging to adjacent atoms pref-

erentially to the same MPI process, preventing an MPI process from

dealing with scattered atoms, to turn a large sparse Hamiltonian

matrix into a small dense one, as shown in Figure 3(b).

Memory saving brought by small dense Hamiltonian ma-
trix is the major scaling benefit of the locality-enhancing strategy.

As shown in the second row of Figure 3(b), an MPI process would

be assigned with grid points belonging to neighbouring atoms, pro-

ducing a Hamiltonian matrix that is both small (due to the small

number of atoms involved) and dense (due to their close locations),

to be kept in its memory, as shown in the third row of Figure 3(b).

Furthermore, accessing its elements is far more efficient than ac-

cessing the sparse one.

It is quite interesting that we have observed an addi-

tional performance benefit brought by the proposed locality-

enhanced strategy. Certain results (e.g., cubic spline for calculating

response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) ) could be reused across grid points

belonging to adjacent atoms, thus a few redundant computations

common to these atoms could be eliminated with improved atom

localities. For example, in Figure 4(a), an MPI process has been

assigned with grid points from 4 delocalized atoms, making cubic

spline calculation performed for all of them, without reusing any

result since they locate far away from each other. Whereas in Fig-

ure 4(b), 2 closely-located atoms are involved in this MPI process,

enabling one atom to reuse the cubic spline result from another.

Cubic splines calculated

for all atoms

.Proc

Atom2

Atom3

Atom4Atom1

(a) All splines are calculated in the exist-

ing load-balancing strategy.

Cubic spline calculated

for atom

Cubic spline reusing

for atom

Proc

Atom1

Atom2

(b) One spline is reused in the pro-

posed locality-enhancing strategy.

Figure 4: Comparison on cubic spline performed when calcu-
lating response potential (𝑣 (1)𝑒𝑠,𝑡𝑜𝑡 (r)) , between two strategies.

3.1.3 Algorithm. Given a set of batches B to be assigned to 𝑁 MPI

processes, the locality-enhanced mapping is achieved, by recur-

sively bisecting B into 𝑁 subsets. In each iteration of bisection

(shown in Figure 5), all batches first project their locations onto

a selected dimension, and then form two subsets which own two

disjoint sets of such projections and contain similar number of grid

points. In particular, the location of each batch is specified with the

coordinate averaged across all its grid points, and a dimension (i.e.,

𝑥,𝑦 or 𝑧) is selected for a given set of batches if their projections

on this dimension spread the largest range.

Algorithm 1 Locality-Enhancing Task Mapping

Input:
P = {𝑝𝑟𝑜𝑐

1
, 𝑝𝑟𝑜𝑐

2
, . . . , 𝑝𝑟𝑜𝑐𝑁 } ⊲ A set of 𝑁 MPI processes

B = {𝑏𝑎𝑡𝑐ℎ1, 𝑏𝑎𝑡𝑐ℎ2, . . . , 𝑏𝑎𝑡𝑐ℎ𝑀 } ⊲ A set of𝑀 (≥ 𝑁 ) batches

Output:
Map(a set of batches→ 𝑝𝑟𝑜𝑐 ) ⊲ Assign the set to 𝑝𝑟𝑜𝑐

1: function Locality_Enhancing_Mapping(P, B)
2: if P includes only one element 𝑝𝑟𝑜𝑐𝑘 then
3: Map.insert(B → 𝑝𝑟𝑜𝑐𝑘 ) ;
4: else
5: P𝑙 ← {𝑝𝑟𝑜𝑐1, . . . , proc⌈𝑛/2⌉ }; ⊲ 𝑛: current size of P
6: P𝑟 ← P − P𝑙 ; ⊲ Equally partition P into two sets

7: Let 𝑑𝑖𝑚 ∈ {𝑥, 𝑦, 𝑧} be the dimension on which the projected coordinates

of all 𝑏𝑎𝑡𝑐ℎ ∈ B spread the largest range

8: B.sort(𝑑𝑖𝑚); ⊲ Sort all 𝑏𝑎𝑡𝑐ℎ ∈ B with their projections on 𝑑𝑖𝑚 in

non-decreasing order

9: 𝑝𝑖𝑣𝑜𝑡 ← 1

2

∑
𝑏𝑎𝑡𝑐ℎ∈B 𝑏𝑎𝑡𝑐ℎ.𝑝𝑜𝑖𝑛𝑡𝑠 ;

10: B𝑙 ← {𝑏𝑎𝑡𝑐ℎ1, . . . , 𝑏𝑎𝑡𝑐ℎ𝑝 };
11: B𝑟 ← B − B𝑙 ; ⊲ 𝑝 satisfies inequalities∑

1≤𝑖≤𝑝 𝑏𝑎𝑡𝑐ℎ𝑖 .𝑝𝑜𝑖𝑛𝑡𝑠 ≤ 𝑝𝑖𝑣𝑜𝑡 and
∑

1≤𝑖≤𝑝+1 𝑏𝑎𝑡𝑐ℎ𝑖 .𝑝𝑜𝑖𝑛𝑡𝑠 > 𝑝𝑖𝑣𝑜𝑡

12: Locality_Enhancing_Mapping(P𝑙 ,B𝑙 ); ⊲ Recursive bisection

13: Locality_Enhancing_Mapping(P𝑟 ,B𝑟 );
14: end if
15: end function

Algorithm 1 describes this strategy in detail, with lines 5-6,12-13

facilitating the recursive bisection scheme, and lines 7-11 perform-

ing an iteration of bisection (i.e., the procedure shown in Figure 5).

In particular, line 7 determines the projection dimension, line 8

makes the projection and sorts the projected coordinates for all

batches, lines 9-11 split those batches into two sets with both batch

location projections and total grid points considered.

3.2 Packed Hierarchical Collective
Communication

We have further enhanced scalability by two means. First, the num-

ber of collective communications has been reduced, by packing

some of them into one. Then, each collective communication has

been accelerated, by applying a hierarchical approach for intra-node

and inter-node data synthesizing.

3.2.1 Packed Collective Communication. The idea is to fuse several
invocations of the same MPI collective function into one invocation,

which packs together all data previously to be synthesized in those

invocations, as shown in Figure 6.

Let an MPI collective function be invoked for 𝑐 times, with the

𝑖𝑡ℎ (1 ≤ 𝑖 ≤ 𝑐) invocation synthesizing an amount of 𝑠𝑖𝑧𝑒𝑖 data, then

they would be packed into one invocation synthesizing

∑𝑐
𝑖=1 𝑠𝑖𝑧𝑒𝑖

data. As a result, the number of MPI collective communications

would be reduced from 𝑐 to 1 (e.g., 2 AllReduce have been packed

into 1 in Figure 6), at the cost of increasing memory consumption

from max𝑖 (𝑠𝑖𝑧𝑒𝑖 ) to
∑𝑐
𝑖=1 𝑠𝑖𝑧𝑒𝑖 in the worst case (e.g., might be

doubled in Figure 6). To avoid memory explosion in case of packing

excessive data, we have used a simple heuristic to choose a proper

𝑐 , so that

∑𝑐
𝑖=1 𝑠𝑖𝑧𝑒𝑖 requires a memory space no more than 30MB.

Typically, this is smaller than the capacity of last level cache on

main-stream processors, thus negligible costs may be introduced.

A typical such scenario exists in our simulation when calculating

response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) , in which themultipole expansion of

the response density (i.e., rho_multipole) is updated by iteratively

invoking MPIAllReduce, with each invocation reducing a row of

rho_multipole among all MPI processes. Several such invocations
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Figure 6: Packed hierachical collective communication, with
two 4-process AllReduce first packed into one, and then bro-
ken into 1○ 2 local Barriers, and 2○ a 2-process AllReduce.

could be packed, with each packed invocation updating several

rows in rho_multipole.

3.2.2 Hierarchical Collective Communication. The idea is to break

each collective communication, into a set of light-weight local

synchronizations for intra-node data synthesizing, followed by a

less-intensive collective communication for inter-node data synthe-

sizing. Each local synchronization is performed among processes

executed on a shared-memory computing node (e.g., a multi-core

CPU), thus requires negligible costs. The less-intensive collective

communication involves only a small subset of processes that are

previously involved, thus improves its efficiency significantly.

Let an 𝑁 -process collective communication be conducted on a

certain matrix A, thus before optimization, partial results from all

𝑁 duplicated copies of A need to be synthesized. Our key insight

is to make one such copy accessible by 𝑚 MPI processes on a

shared-memory node (with MPI SHM extension [24]), so that it

could be updated leveraging a set of𝑚-process synchronizations.

After updating all
𝑁
𝑚 copies in this way, the 𝑁 -process collective

communication could be narrowed to
𝑁
𝑚 processes, with memory

consumption also reduced to
1

𝑚 .

To update an𝑚-process-shared copy of A, we first sliced it into

𝑚 chunks, and then perform𝑚 synthesizations sequenced by local

barriers, with each chunk synthesizing its𝑚 partial results from

𝑚 processes in turn without write conflicts. Figure 6 illustrates

the hierarchical scheme using an example of AllReduce with 𝑁 =

4,𝑚 = 2, in which the intensity of AllReduce has been reduced

from among 4 processes to 2, and the required storage has been

reduced from 4 data copies to 2.

4 INNOVATIONS ON PORTABILITY
In this section, we first describe our OpenCL implementation for

quantum perturbation (Section 4.1), then introduce optimizations

for its kernels (Sections 4.2- 4.4), i.e., codes that execute on accel-

erators such as GPUs, and finally discuss its portability to HPC

systems equipped with various accelerators (Section 4.5).

4.1 A Portable Implementation with OpenCL
We have re-written all time-consuming calculations for quantum

perturbation (as shown in Figure 1) with the OpenCL program-

ming interface, enabling them to be accelerated on most exist-

ing accelerators, thus portable among various HPC systems. In

particular, OpenCL-accelerated calculations include four parts of

calculation of response density matrix (𝑃
(1)
𝜇𝜈 )) , real-space inte-

gration of the response density (𝑛 (1) (r)) , Poisson solver for the

response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) , and calculation of response Hamil-

tonian (𝐻
(1)
𝜇,𝜈 ) . Principals below have been applied to our implemen-

tation, which theorically could be generalized onto any acclerator

and have been validated on the two accelerators with diverse archi-

tecture (i.e., SW39010 and AMD GCN GPU).

Parallelism. In each OpenCL kernel, two-level fine-grained

parallelism is facilitated, across batches and grid points respectively.

In particular, each OpenCL work-item (i.e., a thread) deals with

a grid point, each OpenCL work-group (i.e., a group of threads)

consists of work-items that process grid points in the same batch,

and the OpenCL NDRange (i.e., the entire work space) includes all

batches assigned to the MPI process launching this kernel.

Data. Arrays required or produced by each OpenCL kernel, are

stored using buffers residing in the __global address space, mapped

onto the accelerator’s off-chip memory. For those arrays that are

reused for several times, __local address space is exploited, to place
array elements reused in a long distance into the accelerator’s on-

chip memory, reducing costly data round trip to off-chip memory.

Synchronization. In each OpenCL kernel, only synchronization
among work-items in the same work-group is allowed, in need of

synthesizing all work-groups in a kernel, it would be split into two

kernels at the synchronizing point.

In particular, our OpenCL implementation has included extensive

code optimizations (e.g., loop fusion/tiling/permutation [25–27],

array contraction [28–30], control flow simplification [31, 32], etc),

enabling considerable computing efficiencies. However in this pa-

per, we focus on further optimizations beyond these traditional

approaches as following.

4.2 Fusing Kernels with Wide Dependence
A number of benefits could be brought by fusing several OpenCL

kernels into one, e.g., reducing data trips to/from long-latency off-

chip memories, eliminating inter-kernel redundancies, improving

parallelism, etc. There exist some compiler tools [33, 34] to automate

this, but restricted to kernels with narrow dependence, i.e., one or

more threads in a producer kernel correspond to a thread in a
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Figure 7: Fusing kernels with wide dependence (related with
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consumer kernel. As a result, fusing kernels with wide dependence,

i.e., one thread in a producer kernel corresponds to multiple threads

in a consumer kernel, is still challenging.

We have succeeded to fuse widely-dependant kernels by leverag-

ing various on-chip data-sharing mechanisms, with two alternative

fusing strategies (i.e., vertical fusion and horizontal fusion), pro-

posed targeting SW39010 and AMD GCN GPU respectively.

The response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) is calculated by iteratively in-

voking two OpenCL kernels that are widely dependent. In each

invocation, the producer kernel would generate the two sets of

spline coefficients (i.e., rho_multipole_spl for multipole expansion

of the response density, and delta_v_hart_part_spl for hartree po-
tential) that are required by each thread in the consumer kernel, for

calculating the spline-interpolated values of the multipole compo-

nents and the multipole density. In particular, an identical producer

kernel (for the same atom), is invoked across all MPI processes,

trading redundant calculations for communication avoidance. Our

fusing methods are introduced with this example.

4.2.1 Vertical Fusion Leveraging RMA on SW39010. Widely-

dependent producer and consumer kernels invoked in the same

MPI process, have been fused into one new kernel vertically on

SW39010, as shown in Figure 7(a). In the fused kernel, the order

between its two phases (i.e., calculating spline coefficients and

spline-interpolated values) is preserved by a global barrier, which

stalls all threads from preceding to the latter phase until all ele-

ments in rho_multipole_spl and delta_v_hart_part_spl produced
by the former phase have been gathered and then broadcasted to

each thread. Efficient global barriers are enabled by the RMA (Re-

mote Memory Access) mechanism on SW39010, which allows data

(less than 64KB) to be transferred asynchronously among on-chip

memories for 64 neighbouring cores.

In this way, data like rho_multipole_spl could be kept on-chip

as intermediate data in the fused kernel, avoiding costly data round

trip to the off-chip memory as kernel arguments (before fusion),

thus yielding notable performance improvements.

4.2.2 Horizontal Fusion Leveraging GPUMemory on AMDGPU. We

have observed that by horizontally fusing kernels invoked across

different MPI processes, redundant calculations in the producer

kernel could be eliminated. As shown in Figure 7(b), kernels from

adjacent 8 MPI processes are fused on a supercomputer whose

computing node consists of a 32-core CPU and 4 GPUs, thus before

fusion, those 8 MPI processes launch their kernels to the same GPU

in turn. The horizontal fusion generates a fused producer kernel

and a fused consumer kernel, yielding two major benefits.

First, costly redundant calculations have been eliminated. Before

fusion, identical producer kernels are invoked across neighbouring

MPI processes to generate identical sets of rho_multipole_spl and
delta_v_hart_part_spl to be feed into various consumers. After

fusion, one such producer kernel is able to serve a horizontally fused

consumer kernel assembled from 8 un-fused consumers (shown in

Figure 7(b)), with redudencies reduced.

Second, data round trips between CPU and GPU mem-

ories have been reduced, by letting rho_multipole_spl and

delta_v_hart_part_spl reside in GPU memory, without transfer-

ring to CPU memory back and forth. More importantly, the kept

data could be fed into 8 consumers in the fused consumer kernel,

as illustrated by the purple circles in Figure 7(b).

4.3 Eliminating Indirect Memory Accesses
Indirect memory access patterns of the form A[B[𝑖]], exhibit weak
spatial locality (of A) thus lead to significant memory inefficiencies.

To eliminate them, our key insight is to build a mapping 𝑓 from

array A to a new array C (i.e., C = 𝑓 (A)), so that C[𝑖] = A[B[𝑖]] is
satisfied for all possible values of 𝑖 . In this way, the indirect access

A[B[𝑖]] could be replaced with a direct access C[𝑖], improving

memory sub-system efficiencies.

Typically, huge run-time overheads would be introduced for

building a such mapping, but we have enabled it to be built once and

reused multiple times, to reduce the overhead. Given a simulated

system, we have observed that for some arrays, 𝑓 is fixed across

all its simulations, e.g., on various supercomputers, using different

numbers of computing nodes. Thus 𝑓 could be built in the first

simulation and kept for further simulations. Take indirect access

coord_center[atom_list[𝑖𝑐𝑒𝑛𝑡𝑒𝑟 ]] (in the initialization phase for

grid partitioning) for example, where 𝑖𝑐𝑒𝑛𝑡𝑒𝑟 denotes an atom’s

global ID but array coord_center is indexed by a local atom ID in a

batch. This mismatch requires to convert an atom’s global ID to its

local ID by atom_list[𝑖𝑐𝑒𝑛𝑡𝑒𝑟 ], and we have built a mapping 𝑓 to

re-arrange elements in coord_center to generate an array indexed

directly by global atom ID, thus eliminate this indirect access. In

addition, this mapping (i.e., array elements re-arrangement) is only

required when simulating a system for the first time.

4.4 Fine-Grained Parallelization
To improve the efficiency of parallel compute units, we have enabled

fine-grained parallelization within the same work-group under the

SIMT (Single Instruction Multiple Threads) execution model (e.g.,

GPUs), by removing inter-thread dependence.
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This fine-grained parallelism has been achieved, by collapsing a

nested loop with loop-carried dependence into a single-level loop

without such dependence, so that this loop could be paralleled

among multiple threads. For example, the following loop is ex-

cerpted from calculating the partitioned hartree potential using the

Adams-Moulton linear multistep integrator, in the phase of calcu-

lating response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) . It is two-level nested, with

innermost level dependent on the outermost level, thus can only

be paralleled among pmax threads. This results in poor parallelism

due to the small value (≤ 9) of pmax, which refers to the maximum

angular momentum component of the atom.

for (p = 0; p <= pmax; p + +)
for (m = −p;m <= p;m + +){
idx = p2 +m + p;A[idx] = func(p,m);

We have collapsed it into a loop without such dependence,

for (idx = 0; idx < (pmax + 1)2; idx + +){
p = sqrt(idx);m = idx − p2 − p;A[idx] = func(p,m);

so that it could be parallelized among (pmax + 1)2 threads, achieving
significantly improved parallelism.

4.5 Discussions on Portability
In aspect of functional portability, our OpenCL implementation

described in Section 4.1 is capable of ensuring correct quantum

perturbation simulation on any OpenCL-supported supercomputer.

In aspect of performance portability, performance improvements

could be expected across multiple supercomputers with optimiza-

tions in Sections 4.2- 4.4, since these optimizations are designed

based on typical heterogeneous accelerating architectures (e.g.,

GPUs). In addition, accelerators with specific target architecture

could also benefit from a part of those optimizations, and we have

included some brief but in-depth analysis in the following.

First, fusing kernels with wide dependence as in Section 4.2,

provides two alternatives of vertical fusion and horizontal fusion, to

adapt various architectures. The former would benefit accelerators

with on-chip communicationmechanisms, whereas the latter would

benefit accelerators allowing data to reside in memory even after

kernel completion (e.g., GPUs).

Second, improving memory sub-system efficiencies as in Sec-

tion 4.3 as well as traditional optimizations mentioned in the last

paragraph of Section 4.1 (e.g., loop tiling, array contraction, etc), is

applicable to a large set of accelerators with multiple-level memory

hierarchy, since those memory optimizations are designed follow-

ing the common principle of minimizing cross-level data move-

ments. As a result, when ported to other accelerators, performance

profits could be expected with just a few tuning, e.g., tiling size.

Third, exploiting fine-grained parallelism as in Section 4.4, can

improve performances on accelerators that equip a large set of

compute units, which is typical on modern GPUs, with Nvidia GPU

having CUDA cores, whereas AMD GPU having vector lanes, yield-

ing significant performance benefits by preventing their compute

units from idleness. However this may not be profitable on proces-

sors exploiting a few coarse-grained parallel compute units, e.g.,

A64FX (ARM64 on Fukagu) includes 52 cores.

(a) Receptor-binding domain
(RBD) on the Spike protein of
SARS-CoV-2, 3006 atoms.

(b) Ligand for HIV-1, 49 atoms.

(c) Polyethylene molecular.

Figure 8: The structure of three biomolecular systems.

5 EVALUATION
5.1 Evaluation Setup
We have evaluated our OpenCL implementation for quantum per-

turbation, on two supercomputers with major differences in their

architectures, across a set of valuable bio-molecular systems.

Two Supercomputers are used in our evaluation. The first one

(HPC #1), is the new generation Sunway supercomputer, i.e., the

latest machine in Sunway family. Each node contains a SW39010

heterogeneous CPU with 390 cores including 6 managing cores and

384 accelerating cores, and nodes are connected via a customized

network. For compilation, swcl [35] is used. The second one (HPC
#2), is an AMD-GPU-accelerated supercomputer, on which each

compute node is equipped with one 32-core 2.50GHz x86 CPU and

accelerated by 4 AMD Radeon Instinct MI50 GPUs interconnected

by the PCIe, with each GPU designed based on GNU architecture

and consisted of 4096 cores in 64 CUs. Compute nodes are connected

using an Infiniband network. For compilation, ROCM [36] is used.

Three systems are simulated in our evaluation, as shown in Fig-

ure 8. The first one (Figure 8(a)) is the receptor-binding demain

(RBD) on the Spike protein of SARS-CoV-2, for which quantum

perturbation simulation helps obtain more protein structure infor-

mation to understand the binding process to ACE2 [37]. The second

one (Figure 8(b)) is the ligand for the HIV-1 protease complex (PDB

1a30 ). The third one (Figure 8(c)) is the H(C2H4)nH molecules,

which are used for the scaling evaluation, all calculations use light

settings and the LDA functional.

5.2 Performance Results
In this section, performance speedups for all innovations proposed

in Sections 3- 4, will be presented on both supercomputers.

In particular, performances have been further improved relative

to the previous work in [37], which accelerated DFPT using Athread

programming interface on HPC #1. Speedups have been calculated

over an OpenCL implementation [38] that is both algorithmically

equivalent to and performance-comparable with [37], so that our

innovations could be evaluated on both HPC #1 and HPC #2.

5.2.1 Locality-Enhancing Task Mapping. Figure 9 gives results

on the locality-enhancing task mapping strategy introduced in
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Figure 9: Results on locality-enhancing task mapping.

Section 3.1, compared with existing load-balancing strategy. Fig-

ure 9(a) compares their memory requirements, with 21,373KB stor-

age needed for each task to keep a large sparse Hamiltonian matrix

under the existing load-balancing strategy, whereas only 58-455KB

is needed to store a local dense Hamiltonian matrix on average

(across all MPI tasks), under our proposed locality-enhancing strat-

egy. This 2-order of magnitude saving on memory consumption,

not only avoids memory explosion thus improves scalability, also

enhances the performances of calculating the response density

(𝑛 (1) (r)) and response Hamiltonian (𝐻
(1)
𝜇,𝜈 ) as shown in Figure 9(b).

Due to improved efficiencies on dense-matrix-access comparedwith

sparse-matrix-access, performances of calculating response density

(𝑛 (1) (r)) have been increased by 7.5% − 19.9%, and for response

Hamiltonian (𝐻
(1)
𝜇,𝜈 ) 7.6% − 26.4%, benefiting both supercomputers.

Figure 9(c) also shows that we are able to reduce the number of cubic

splines performed when calculating response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) ,

yielding 9.5% improvement on HPC #1.

5.2.2 Packed Hierarchical Collective Communication. Figure 10

shows the AllReduce time spent on synthesizing rho_multipole

among all MPI tasks after calculating response density (𝑛 (1) (r)) ,
obtained with baseline MPIAllReduce and our proposed packed

hierarchical scheme in Section 3.2, respectively. Results show that

by packing every 512 MPIAllReduce invocations into one, commu-

nication time among all copies of rho_multipole has been signif-

icantly reduced, achieving speedups of 8.2 × −34.9× on HPC #1
and 9.2×−269.6× on HPC #2 respectively, across thousands of MPI

processes when simulating 30,002/60,002 atoms. Those speedups

have been further enhanced to 12.4×−567.2× on HPC #2, by letting
every 32 MPI process keep one data copy and perform local update

on it in-turn, yielding more savings on global communication time

at a slight cost of local update. Whereas this is not applicable to HPC
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Figure 11: Results on eliminating indirect memory accesses.
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(b) Speedups of horizontal fusion on HPC #2.

Figure 12: Results on fusing widely-dependent kernels.

#1, since MPI processes mapping to the same node are executed on

cores with their memories physically dis-connected.
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Figure 13: Results on fine-grained parallelism for HPC #2.

5.2.3 Fusing Kernels with Wide Dependences. Figure 12 shows re-
sults of fusing widely-dependent kernels as presented in Section 4.2.

The response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) is originally calculated by two

widely-dependent kernels, with spline coefficients produced by the

first kernel and then consumed by each thread in the second ker-

nel. As shown in Figure 12(a), the two sets of coefficents requires

28KB/498KB memory to be allocated on each MPI process, with

the latter exceeding the RMA volume limit (64KB) on HPC #1, thus
noticeable speedups would not be observed with vertical fusion.

In comparison, calculation strength of the first kernel could be re-

duced by horizontal fusion on HPC #2, leading to speedups upto

2.4× as shown in Figure 12(b).

5.2.4 Eliminating Indirect Memory Accesses. Figure 11 shows

speedups obtained by eliminating indirect memory accesses

as in Section 4.3, for H(C2H4)nH. By re-arranging elements

in coord_center, we have eliminated the indirect access

coord_center[atom_list[𝑖𝑐𝑒𝑛𝑡𝑒𝑟 ]], yielding speedups upto 6.2 ×
/3.9× on HPC #1/HPC #2, for the initialization (i.e., partitioning

the 3D grid) phase. Greater improvements have been observed on

HPC #1 due to longer off-chip memory access latency compared

with HPC #2, but both performances have been notably enhanced,

demonstrating a good performance portability of our approach.

5.2.5 Fine-Grained Parallelism. Figure 13 shows speedups obtained
by removing inter-thread dependence as introduced in Section 4.4,

when calculating response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) for H(C2H4)nH.

By collapsing a two-level loop with loop-carried dependence, into

a one-level loop without such dependence, the loop is able to be

parallelized among all threads in a wavefront on HPC #2, yielding
speedups upto 1.34×. We have noticed that as the number of MPI

processes grows, better performance could be achieved due to less

idleness in compute units.

5.2.6 Overall Impacts. Figure 14 illustrates the execution time

spent on each phase before and after optimization, to demon-

strate the overall effectiveness of our innovations. Several typ-

ical cases simulating different biomolecular systems using vari-

ous numbers of MPI tasks, are given for both HPC #1 and HPC
#2 respectively. Before optimization, time-consuming phases vary

across cases, e.g., calculating response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) and re-

sponse density matrix (𝑃
(1)
𝜇𝜈 )) take a notable time share when

Figure 14: Overall impacts on various phases across sev-
eral typical cases, with each case denoted by both simulated
biomolecular system and used MPI tasks, where Poly repre-
sents H(C2H4)5000H consists of 30, 002 atoms.

simulating RBD and H(C2H4)5000H respectively. Their execu-

tion time has been reduced significantly with proposed inno-

vations, e.g., achieving 36.5× speedups for the phase of cal-

culating response density matrix (𝑃
(1)
𝜇𝜈 )) in RBD with 64 MPI

tasks on HPC #1 and 6.47× speedups for the phase of calculat-

ing response potential (𝑣
(1)
𝑒𝑠,𝑡𝑜𝑡 (r)) inH(C2H4)5000Hwith 2048 MPI

tasks on HPC #2. Moreover, communication costs (denoted as

Comm) grows large when the number of MPI tasks increases before

optimization, which have been significantly reduced after optimiza-

tion, e.g., by 90.7% when simulating H(C2H4)5000H with 2048 MPI

tasks on HPC #2. By reducing various phases costs, our innovations
have succeeded in reducing overall execution time across different

cases, achieving speedups upto 11.1×.

5.3 Scalability Results
5.3.1 Strong Scalability. Figure 15 shows strong scaling results on

both supercomputers, calculated with the polyethylene molecular

system H(C
2
H4)𝑛H. Five systems (𝑛 ∈ {2500, 5000, 10000, 19600,

33335}) are used in our evaluation, involving up to 200,012 atoms

and 533,360 electrons. First, strong speedups for both supercom-

puters, are given in Figure 15(a), using the 60,002-atom system

(𝑛 = 10000). On HPC #1, a speedup of 1.85× could be achieved with

10000 MPI processes compared with 5000 processes, yielding a par-

allel efficiency of 92.6%. This slightly drops beyond 10000 processes,

i.e., 2.81 × /4.88× for 20000/40000 tasks, due to mildly increased

communication costs. Results are similar on HPC #2 using only its

CPU cores, with speedups of 1.86 × /3.10 × /6.08× obtained using

2048/4096/8192 processes compared with 1024 processes. While

GPUs on HPC #2 are included for acceleration, strong speedups

are slightly less impressive. This performance deterioration arises,

mainly from communications in the phase of calculating response

density matrix (𝑃
(1)
𝜇𝜈 )) . In particular, 22.5%/28.6%/38.9%/39.1% of

time has been spent on 𝑃
(1)
𝜇𝜈 using 1024/2048/4096/8192 MPI pro-

cesses, leading to reduced parallel efficiency. Figures 15(b) provides

more detailed execution time for them on HPC #2 (using GPUs),
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(a) Log-log strong speedup with 60,002 atoms.

(b) Time to solution per cycle on HPC #2.

Figure 15: Strong scaling on two HPC systems for the
H(C

2
H4)𝑛H, with 𝑛 ∈ {2500, 5000, 10000, 19600, 33335}.

showing that with our efficient OpenCL implementation, quan-

tum perturbation simulation per cycle on 200,002 atoms could be

completed within 1 minutes.

5.3.2 Weak Scalability. Figure 16 gives weak scaling results on

both supercomputers when simulated atoms increase from 30,002

to 200,012. Results shows that, satisfied weak scalability has

been achieved on both supercomputers, with parallel efficiencies

76.7%/75.3%/74.1% obtained for 200,012 atoms, on HPC #1/HPC #2
(CPU only)/HPC #2 (with GPUs) respectively. For small systems,

the scaling from the response density matrix computation (O(N
1.2

))

dominates the performance, whereas for large systems, the compu-

tation of the response potential determines the value and make it

increase to O(N
1.7

). In other words, an increase of the atom numbers

increases the scaling and thus decreases the weak scalability.

5.3.3 Discussions on Scalability Results. Comparing scaling results

in Figures 15 16, before-optimizations results tend to (1) fail on large

molecular systems, and (2) exhibit higher scaling efficiencies but

lower FLOPs/sec. First, without innovations in Section 3.1, before-

optimizations results will fail to scale due to memory explosion, e.g.,

the Hamiltonian matrix for 50000 atoms requires approximately

Figure 16: Weak scaling on two HPC systems for H(C
2
H4)𝑛H,

with HPC #1 uses 2500/5000/10000/20480 MPI processes and
HPC #2 uses 2048/4096/8192/16384, respectively.

16GB memory (assume two basis functions per atom and 10% spar-

sity), exceeding typical per-process memory capacity (e.g., 4GB

on HPC #2). Second, before-optimizations results will scale more

efficiently but run much slower, since OpenCL parts will execute

longer without innovations in Sections 4.2- 4.4, making the non-

accelerated part less dominant.

6 CONCLUSION
In this paper, a portable and scalable OpenCL implementation for

quantum perturbation theory has been proposed, enabling effi-

cient all-electron all-potential simulations to be performed across

various high-performance computing systems. Portability on both

functionality and performance has been achieved, by utilizing a

cross-platform unified interface and a collection of advanced hetero-

geneous optimizations. Exceptional scalability has been obtained by

eliminating major memory and communication limitations with a

locality-enhancing task mapping strategy and a packed hierarchical

collective communication scheme. We have evaluated our OpenCL

implementation on two advanced supercomputers, enabling the

system scale to 200,000 atoms with all-electron precision, with the

potential for a substantial impact on progress in the prediction of

the chemical and physical properties.
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Appendix: Artifact Description/Artifact Evaluation

ARTIFACT DOI
https://doi.org/10.5281/zenodo.8085489

ARTIFACT IDENTIFICATION
Contributions of the paper and how they will be justified
with our artifacts.

This work re-designs the quantum perturbation calculations
within FHI-aims (a all-electron full-potential framework), with a
portable and scalable OpenCL implementation for the heteroge-
neous many-core supercomputer, with following major innova-
tions:

(1) A portable quantum perturbation implementation has been
developed using OpenCL, i.e., a cross-platform unified pro-
gramming framework, to enable efficient all-electron all-
potential simulations across various supercomputers.

(2) Major scaling limitations in quantum perturbation has been
removed, by a locality-enhancing task mapping strategy. It
enables neighbouring atoms to be simulated in the same
MPI process, leading to significantly reduced per-process
memory consumption and more efficient memory accesses.

(3) Efficient collective communication has been enabled, by
introducing a packed hierarchical communication scheme,
which reduces the total number of collective communica-
tions by packing several of them together, and accelerates
each communication by applying a hierarchical approach
for inter-node and intra-node data synthesizing.

(4) A set of performance-portable OpenCL optimizations have
been implemented to improve the efficiencies of compute
units and memory sub-system for various heterogeneous
processors, by reordering OpenCL kernel invocations, mem-
ory accesses and arithmetic operations.

(6) We perform a full ab initio simulation of a real material
containing 3006 atoms and compare it with experimental re-
sults. We have evaluated our OpenCL-accelerated quantum
perturbation simulation on two advanced supercomputers,
and results show that our implementation exhibits remark-
ably performance on various material systems, enabling the
system scale to 200,000 atoms with all-electron precision.

Our artifacts include an optimized version, and several sub-
optimized versions with certain optimization excluded. By running
the optimized version, contributions (1) and (5) could be justified
directly. By comparing results of the optimized version with certain
sub-optimized version, contributions (2)-(4) could be testified with
corresponding speedup, respectively.

Software architecture of our artifacts.
All versions of artifacts provided leverage the same software

architecture (also the same as the open source FHI-aims-ocl-sc23)
as follows. The entry point and function name of each subprocedure
can be found at the README file of the project.

(1) DFT phase. It serves to provide data for the DFPT phase,
with scf_solver as its entry point.

(2) DFPT phase. It completes quantum perturbation calcula-
tion by iteratively calling following functions, until self-
consistency has been reached. In our research, we only fo-
cus on the polar_reduce_memory version of DFPT, with
cpscf_solver_polar_reduce_memory as its entry point.
a. DM. It calculates the response of the density matrix.
b. Sumup (OpenCL-accelerated). It calculates the response

of the electronic density, launching 2 OpenCL kernels.
c. Rho (OpenCL-accelerated). It calculates the response of the

total electrostatic potential, launching 1 OpenCL kernel.
d. H (OpenCL-accelerated). It calculates the response of the

Kohn-Sham Hamiltonian matrix, with as its entry point,
launching 1 OpenCL kernel.

To what extent our artifacts contribute to reproductivity of
experiments.

All results in our evaluation, could be reproduced by our provided
artifacts, given enough computing nodes on the two HPC systems.
However, speedup results could be reproduced even with a few
computing nodes.

REPRODUCIBILITY OF EXPERIMENTS
All calculations and scalability tests were run with FHI-aims on
two supercomputers, the new generation Sunway suptercomputer
and an AMD-GPU-accelerated supercomputer. The experiment
workflow includes the following three steps. Note that different
versions of the code and different test cases (including input files)
should be chosen for different evaluations.

(1) Build: Install and compile the libraries. Then "cd src", modify
the path of the libraries in Makefile and "make scalapack.mpi
-jN’ to generate binary aims.191127.scalapack.mpi.x under
"bin" directory.

(2) Execution: Run the binary on a cluster with specific input
file. First, go to the the testcase directory which contains
control file (control.in) and the geometry file (geometry.in).
Then submit the calculation task to the job management
system of the cluster.

(3) Data Processing: Use a specific python script to extract rele-
vant information including the execution time of some sub-
procedures and so on from the output file, which is generated
during execution.

The installation of the software is expected to take 30 minutes.
The execution time of the binary ranges from 10 minutes to 4
hours according to different testcases. The extraction takes about 2
minutes.

The key result of this workflow is the output file generated dur-
ing execution, which includes execution time of different parts, the
value of some runtime variable corresponding to memory consump-
tion and the result of the DFPT calculation.

https://github.com/aims-ocl/FHI-aims-ocl-sc23
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The numerical results found in the article include execution time
of some subprocedures, speedups between and scalability efficiency,
which can be directly obtained, calculated from the above results.

ARTIFACT DEPENDENCIES REQUIREMENTS
(1) Hardware resources required and utilized.
(a) Hardware requirements. The artifact needs multi-core x86-

64 CPU and accelerators which supports OpenCL 2.0 in-
cluding supports for atomic functions, constant kernel
parameters and CL_MEM_USE_HOST_PTR. However, be-
cause the code is optimized for specific hardware, its per-
formance may not be good. An AMD-GPU-accelerated
cluster is recommended.

(b) Hardware for the experiments. All experiments of the pa-
per were run on two supercomputers, the new generation
Sunway suptercomputer and an AMD-GPU-accelerated
supercomputer with a special version of AMD GPU (be-
tween MI50 and MI60, with 64 computing units like mi60,
but only 16GB of memory like MI50.).

(2) Operating systems. Linux.
(3) Software libraries. Some software libraries have been packed

into the artifact as source code. However, the following li-
braries are still needed.

(a) MPI Fortran, C and C++ compiler.
(b) OpenCL driver, e.g. ROCM on AMD GPU.
(c) Mathlibs providing LAPACK and SCALAPACK support,

e.g. INTEL MKL on x86 and xMath on sunway.
(4) The datasets has been packed into the artifact. In particular,

a dataset is a series of atomic types and coordinates, i.e., a
geometry file. They are publicly available.

ARTIFACT INSTALLATION DEPLOYMENT
PROCESS
Detailed guidelines are provided in the README of the arti-
fact. Here’s an simpler guideline.

(a) Prepare dependencies
(i) Install or load mathlibs to provide LAPACK and SCALA-

PACK support, e.g. INTEL MKL on x86 and xMath on
sunway.

(ii) Install or load a OpenCL driver to provide OpenCL sup-
port, e.g. ROCM on AMD GPU and xMath on Sunway.

(iii) Install or load a compiler supporting MPI and
C+Frotran.

(iv) Set PATH and LD_LIBRARY_PATH for the software and
libraries above. We recommend you to package the envi-
ronment variable design as an env.sh for convenience, so
that you just need to source env.sh later. We provide the
examples under testcases-SC/envs-example/example-
name/env.sh of the artifact.

(v) It takes about 1-60 minutes to load the dependencies, de-
pending on whether the user’s system provides relevant
software.

(b) Build
(i) Copy initial_cache.example.cmake as ini-

tial_cache.cmake. We provide the examples un-
der testcases-SC/envs-example/example-name

/initial_cache.cmake. CMAKE_Fortran_FLAGS,
CMAKE_C_FLAGS options and so on in file based
on the your environment. We provide the exam-
ples under testcases-SC/envs-example/example-
name/initial_cache.cmake.

(ii) Then compile the code after source env.sh.
(iii) cmake -C ./initial_cache.cmake -S . -

B build -DCMAKE_PREFIX_PATH=""
-DOpenCL_FOUND=True -
DOpenCL_LIBRARY=YOUR_PATH/opencl/lib/ -
DOpenCL_INCLUDE_DIR=YOUR_PATH/opencl/include/

(iv) cmake –build build -j4
(v) It takes about 5-30 minutes to compile, depending on the

peformance of the CPU and the number of CPU cores
used for compilation. After successful compilation, you
will be able to see build/aims.191127.scalapack.mpi.x.

(c) Prepare datesets. Four kinds of test cases under testcases-
SC directory of the artifact, among which Polypeptide is
used for basic test because it is simple, time-consuming
and representative. All datesets are directly provided.

(d) Run the code. Enter one of the dateset directories and then
execute the aims.191127.scalapack.mpi.x. We provide a
example script sbatch.sh to run the code. The README
of the artifact provides more detail of the experiments. It
takes about 4 minutes to 4 hours dependending on the
dateset. We have provided small cases to run.
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