
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358363878

Unified Holistic Memory Management Supporting Multiple Big

Data Processing Frameworks over Hybrid Memories

Article  in  ACM Transactions on Computer Systems · February 2022

DOI: 10.1145/3511211

CITATIONS

3
READS

28

11 authors, including:

Some of the authors of this publication are also working on these related projects:

ECI-Cache View project

Hardware-based Data Compression in Memory View project

Jiacheng Zhao

Chinese Academy of Sciences

9 PUBLICATIONS   96 CITATIONS   

SEE PROFILE

Chenxi Wang

12 PUBLICATIONS   67 CITATIONS   

SEE PROFILE

John Zigman

The University of Sydney

35 PUBLICATIONS   212 CITATIONS   

SEE PROFILE

Haris Volos

HP Inc.

33 PUBLICATIONS   1,959 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Chenxi Wang on 02 January 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/358363878_Unified_Holistic_Memory_Management_Supporting_Multiple_Big_Data_Processing_Frameworks_over_Hybrid_Memories?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/358363878_Unified_Holistic_Memory_Management_Supporting_Multiple_Big_Data_Processing_Frameworks_over_Hybrid_Memories?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ECI-Cache?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Hardware-based-Data-Compression-in-Memory?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiacheng-Zhao-4?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiacheng-Zhao-4?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiacheng-Zhao-4?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chenxi-Wang-33?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chenxi-Wang-33?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chenxi-Wang-33?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Zigman?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Zigman?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Sydney?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John-Zigman?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haris-Volos?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haris-Volos?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/HP-Inc?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haris-Volos?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chenxi-Wang-33?enrichId=rgreq-fafb8ea7dd7df5eb57408ee6e3a20b42-XXX&enrichSource=Y292ZXJQYWdlOzM1ODM2Mzg3ODtBUzoxMTQzMTI4MTExMDU5Njc3N0AxNjcyNjU1MzgyMTM3&el=1_x_10&_esc=publicationCoverPdf


2

Unified Holistic Memory Management Supporting Multiple

Big Data Processing Frameworks over Hybrid Memories

LEI CHEN and JIACHENG ZHAO, SKL Computer Architecture, ICT, CAS, China and University of

Chinese Academy of Sciences, China

CHENXI WANG, University of California, Los Angeles, California

TING CAO, Microsoft Research, China

JOHN ZIGMAN, The University of Sydney, Australia

HARIS VOLOS, University of Cyprus, Cyprus

ONUR MUTLU, ETH Zürich, Switzerland

FANG LV, SKL Computer Architecture, ICT, CAS, China

XIAOBING FENG, SKL Computer Architecture, ICT, CAS, China and University of Chinese Academy of

Sciences, China

GUOQING HARRY XU, University of California, Los Angeles, California

HUIMIN CUI, SKL Computer Architecture, ICT, CAS, China and University of Chinese Academy of

Sciences, China

To process real-world datasets, modern data-parallel systems often require extremely large amounts of mem-

ory, which are both costly and energy inefficient. Emerging non-volatile memory (NVM) technologies

offer high capacity compared to DRAM and low energy compared to SSDs. Hence, NVMs have the poten-

tial to fundamentally change the dichotomy between DRAM and durable storage in Big Data processing.

However, most Big Data applications are written in managed languages and executed on top of a managed

This submission is based on authors’ previous publication: Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos,

Onur Mutlu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. 2019. Panthera: Holistic memory management for big data

processing over hybrid memories. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI 2019). ACM, New York, 347–362. DOI:https://doi.org/10.1145/3314221.3314650.

In this article, we develope a dynamic monitoring technique which monitors data access patterns at runtime to help data

replacement when the patterns can not be inferred statically. We apply this technique to QuickCached and show its ef-

fectness. We also analyze the situations where coarse-grained patterns are not enough to achieve good performance. We

further leverage the profiling technique to do fine-grained data replacement. The experiment results show that our methods

can achieve more energy reduction with less performance overhead.

The work is supported in part by National Natural Science Foundation of China grants 62090024, 61872043, 61802368, and

by US National Science Foundation grants CNS-1763172, CNS-1907352, CNS-2006437, CNS-2007737, CNS-2128653, and

CNS-2106838, ONR grants N00014-16-1-2913 and N00014-18-1-2037, as well as gifts from Alibaba, Intel, and VMware.

Authors’ addresses: L. Chen, J. Zhao (corresponding author), X. Feng, and H. Cui, SKL Computer Architecture, ICT, CAS,

Beijing, China and University of Chinese Academy of Sciences, Beijing, China; email: huimin.cui@gmail.com; C. Wang

and G. H. Xu, University of California, Los Angeles, USA; T. Cao, Microsoft Research, China; J. Zigman, The University

of Sydney, Australia; H. Volos, University of Cyprus, Cyprus; O. Mutlu, ETH Zürich, Switzerland; F. Lv, SKL Computer

Architecture, ICT, CAS, China.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0734-2071/2022/07-ART2 $15.00

https://doi.org/10.1145/3511211

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

https://orcid.org/0000-0002-7558-1001
https://orcid.org/0000-0002-1451-3101
https://orcid.org/0000-0002-3777-0012
https://doi.org/10.1145/3314221.3314650
mailto:permissions@acm.org
https://doi.org/10.1145/3511211


2:2 L. Chen et al.

runtime that already performs various dimensions of memory management. Supporting hybrid physical mem-

ories adds a new dimension, creating unique challenges in data replacement. This article proposes Panthera,

a semantics-aware, fully automated memory management technique for Big Data processing over hybrid

memories. Panthera analyzes user programs on a Big Data system to infer their coarse-grained access pat-

terns, which are then passed to the Panthera runtime for efficient data placement and migration. For Big

Data applications, the coarse-grained data division information is accurate enough to guide the GC for data

layout, which hardly incurs overhead in data monitoring and moving. We implemented Panthera in Open-

JDK and Apache Spark. Based on Big Data applications’ memory access pattern, we also implemented a new

profiling-guided optimization strategy, which is transparent to applications. With this optimization, our ex-

tensive evaluation demonstrates that Panthera reduces energy by 32–53% at less than 1% time overhead

on average. To show Panthera’s applicability, we extend it to QuickCached, a pure Java implementation of

Memcached. Our evaluation results show that Panthera reduces energy by 28.7% at 5.2% time overhead on

average.

CCS Concepts: • Information systems → Data management systems; • Hardware → Non-volatile

memory; • Software and its engineering→Memory management;

Additional Key Words and Phrases: Hybrid memories, Big Data systems, memory management, garbage

collection

ACM Reference format:

Lei Chen, Jiacheng Zhao, Chenxi Wang, Ting Cao, John Zigman, Haris Volos, Onur Mutlu, Fang Lv, Xiaobing

Feng, Guoqing Harry Xu, and Huimin Cui. 2022. Unified Holistic Memory Management Supporting Multi-

ple Big Data Processing Frameworks over Hybrid Memories. ACM Trans. Comput. Syst. 39, 1–4, Article 2

(July 2022), 38 pages.

https://doi.org/10.1145/3511211

1 INTRODUCTION

Modern Big Data computing exemplified by systems such as Spark and QuickCached is extremely
memory intensive. Lack of memory can lead to a range of severe functional and performance issues
including out-of-memory crashes, significantly degraded efficiency, or even loss of data upon node
failures. Relying completely on DRAM to satisfy the memory need of a data center is costly in
many different ways—e.g., large-volume DRAM is expensive and energy inefficient; furthermore,
DRAM’s relatively small capacity dictates that a large number of machines is often needed just to
provide sufficient memory, resulting in underutilized CPU resources for workloads that cannot be
easily parallelized.

Emerging non-volatile memory (NVM), such as phase change memory (PCM) [49, 79, 89], resis-
tive random-access memory (RRAM) [78], Spin-transfer torque memory (STT-MRAM) [46] or 3D
XPoint [5], is a promising technology that, has large memory capacity, energy efficiency and low
per-GB cost, making them a supplement to traditional DRAM. NVM is on the memory bus and can
be accessed via load/store instructions, enabling direct manipulation of persistent data in memory.
There are two representative usages of NVM. The first is to leverage its persistence feature to en-
sure the persistent data structures are crash consistent and resume executions in the event of a
failure [14, 21, 23, 24, 26, 27, 41, 42, 47, 48, 51, 52, 55, 56, 64, 71, 73, 81–84, 95, 96]. The second is as
a supplement to traditional DRAM devices, i.e., to build the hybrid memory architecture, which
benefits from both access speed of DRAM and the large capacity, low power consumption,and low
per-GB cost of NVM. Our proposed approach falls into the second category. Systems with hybrid
memories have received much attention [9, 11, 13, 15, 18, 25, 34, 43, 48, 49, 54, 60, 62, 63, 69–71, 76,
77, 80, 85–87, 90, 93, 94] recently from both academia and industry. The benefit of mixing NVM
with DRAM for Big Data systems is obvious—NVM’s high capacity makes it possible to fulfill the

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

https://doi.org/10.1145/3511211


Unified Holistic Memory Management Supporting Multiple Big Data 2:3

high memory requirement of a Big Data workload with a small number of compute nodes, holding
the promise of significantly reducing the costs of both hardware and energy in large data centers.

1.1 Problems

Although using NVM for Big Data systems is a promising direction, the idea has not yet been fully
explored. Adding NVM naïvely would lead to large performance penalties due to its significantly
increased access latency and reduced bandwidth—e.g. the latency of an NVM read is 2–4× larger
than that of a DRAM read and NVM’s bandwidth is about 1/8–1/3 of that of DRAM [30, 75]. Hence,
a critical research question that centers around all hybrid-memory-related research is how to per-

form intelligent data allocation and migration between DRAM and NVM so that we can maximize

the overall energy efficiency while minimizing the performance overhead? To answer this question
in the context of Big Data processing, there are two major challenges.

1.1.1 Challenge #1: Working with Garbage Collection (GC). A common approach to managing
hybrid memories is to modify the OS or hardware to (1) monitor access frequency of physical
memory pages and (2) move the hot (frequently accessed) data into DRAM. This approach works
well for native language applications where data stays in the memory location it is allocated into.
However, in managed languages, the garbage collector keeps changing the data layout in memory
by copying objects to different physical memory pages, which breaks the bonding between data
and physical memory address. Most Big Data systems are written in such managed languages,
e.g., Java and Scala, for the quick development cycle and rich community support they provide.
Managed languages are executed on top of a managed runtime such as the JVM, which employs a
set of sophisticated memory management techniques such as garbage collection. As a traditional
garbage collector is not aware of hybrid memories, allocating and migrating hot/cold pages at the
OS level can easily lead to interference between these two different levels of memory management.

1.1.2 Challenge #2: Working with Application-Level Memory Subsystems. Modern Big Data sys-
tems all contain sophisticated memory subsystems that perform various memory management
tasks at the application level. For instance, Apache Spark [6] uses resilient distributed datasets

(RDDs) as its data abstraction. An RDD is a distributed data structure that is partitioned across
different servers. At a low level, each RDD partition is an array of Java objects, each representing
a data tuple. RDDs are often immutable but can exhibit diverse lifetime behavior. For example, de-
velopers can explicitly persist RDDs in memory for memorization or fault tolerance. Such RDDs
are long-lived while RDDs storing intermediate results are short-lived.

An RDD can be at one of many storage levels (e.g., memory, disk, unmaterialized, etc.). Spark
further allows developers to specify, with annotations, where an RDD should be allocated, e.g.,
in the managed heap or native memory. Objects allocated natively are not subject to GC, leading
to increased efficiency. However, data processing tasks, such as shuffle, join, map, or reduce, are
performed over the managed heap. A native-memory-based RDD cannot be directly processed
unless it is first moved into the heap. Hence, where to allocate an RDD depends on when and
how it is processed. For example, a frequently accessed RDD should be placed in DRAM while a
native-memory-based RDD would not be frequently used and placing it in NVM would be desir-
able. Clearly, efficiently using hybrid memories requires appropriate coordination between these
orthogonal data placement polices, i.e., the heap, native memory, or disk, vs. NVM or DRAM.

Another instance is QuickCached, which is a pure Java implementation of Memcached server
based on QuickServer [3]. In particular, it is an in-memory key-value store for small chunks
of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.
QuickCached leverages ConcurrentHashMap and So f tRe f erence for managing its memory, i.e.,

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:4 L. Chen et al.

ConcurrentHashMap for storing the key-value data, and So f tRe f erence for automatically clear-
ing data at the discretion of the garbage collector in response to memory demand.

1.1.3 State of the Art. In summary, the key challenges in supporting hybrid memories for Big
Data processing lie in how to develop runtime system techniques that can make memory al-
location/migration decisions that match how data is actually used in an application. Although
techniques such as Espresso [80] and Write Rationing [11] support NVM for managed programs,
neither of them was designed for Big Data processing whose data usage is greatly different than
that of regular, non-data-intensive Java applications [65, 66].

For example, Espresso defines a new programming model that can be used by the developer
to allocate objects in persistent memory. However, real-world developers would be reluctant to
completely re-implement their systems from scratch using such a new model. Shoaib et al. [11]
introduced the Write Rationing GC, which moves the objects that experience a large/small number
of writes into DRAM/NVM to prolong NVM’s lifetime. Write Rationing pioneers the work of using
the GC to migrate objects based on their access patterns. However, Big Data systems make heavy
use of immutable datasets—for example, in Spark, most RDDs are immutable. Placing all immutable
RDDs into NVM can incur a large overhead as many of these RDDs are frequently read and an
NVM read is 2–4× slower than a DRAM read.

1.2 Our Contributions

1.2.1 Our Insight. We analyzed two representative big data systems, i.e., Spark for data pro-
cessing and QuickCached for data store, and we observed that even they exhibit diverse memory
behaviors, we have opportunities to share the common memory management strategy in JVM. Our
observations are as follows:

• Spark applications have two unique characteristics that can greatly aid hybrid memory man-
agement.

First, they perform bulk object creation, and data objects exhibit strong epochal behavior

and clear access patterns. For example, Spark developers program with RDDs, each of which
contains objects with exactly the same access/lifetime patterns. Exploiting these patterns at
the runtime would make it much easier for Big Data applications to enjoy the benefits of
hybrid memory.

Second, the data access and lifetime patterns are often statically observable in the user

program. For example, an RDD is a coarse-grained data abstraction in Spark and the access
patterns of different RDDs can often be inferred from the way they are created and used in
the program (Section 2).
• QuickCached has one unique characteristic that can aid hybrid memory management. It uses

a huge hash table for storing the key-value pairs, and when processing each query request,
it would create a large number temporary objects which would be frequently accessed in a
very short period of time. Therefore, the lifetime of frequently accessed data is short, and
the data with long lifetime are infrequently accessed.

Hence, unlike regular, non-data-intensive applications for which profiling is often needed to
understand the access patterns of individual objects, we can develop a simple static analysis for a
Big Data application to infer the access pattern of each coarse-grained data collection, in which all
objects share the same pattern. This observation aligns well with prior work (e.g., Facade [66] or
Yak [65]) that requires simple annotations to specify epochs to perform efficient garbage collection
for Big Data systems. The static analysis does not incur any runtime overhead, yet it can produce
precise enough data access information for the runtime system to perform effective allocation and
migration.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:5

1.2.2 Panthera. Based on our extensive experience with Big Data applications, we propose Pan-
thera, which divides a mess of data objects into several data collections according to application’s
semantics and infers the coarse-grained data usage behavior by lightweight static program anal-
ysis and dynamic data usage monitoring. Panthera leverages garbage collection to migrate data
between DRAM and NVM, incurring almost no runtime overhead.

We select two big data processing frameworks in this article. First, we focus on Apache Spark as
it is the de-facto data-parallel framework deployed widely in industry. Spark hosts a range of appli-
cations in machine learning, graph analytics, stream processing, and so on, making it worthwhile
to build a specialized runtime system, which can provide immediate benefit to all applications run-
ning atop. Furthermore, to demonstrate the generality of our approach, Panthera is built also on
QuickCached, a Java implementation of Memcached, and Section 4 provides a detailed discussion
of Panthera’s applicability.

Panthera enhances both the JVM and Spark/QuickCached with two major innovations. First,
based on the observation that access patterns in a Big Data application can be identified statically,
we develop two static analyzers (Section 3) for Spark and QuickCached, respectively. In particular,
the Spark analyzer analyzes a Spark program to infer a memory tag (i.e., NVM or DRAM) for
each RDD variable based on the variable’s location and the way it is used in the program, and
the QuickCached analyzer analyzes the QuickCached source code to identify the huge global hash
table, and then infer its corresponding memory tags. These tags indicate which memory the objects
should be allocated in.

Second, we develop a new semantics-aware and physical-memory-aware generational GC
(Section 4). Our static analysis instruments the Spark program and QuickCached to pass the in-
ferred memory tags down to the runtime system, which uses these tags to make allocation/mi-
gration decisions. Since our GC is based on a high-performance generational GC in OpenJDK,
Panthera’s heap has two spaces, representing a young and an old generation. We place the en-
tire young generation in DRAM while splitting the old generation into a small DRAM component
and a large NVM component. The insight driving this design is based on a set of key observa-
tions (discussed in Section 2 in detail) we make over the lifetimes and access patterns of RDDs in
representative Spark executions and the QuickCached objects:

• Most objects are allocated initially in the young generation. Since they are frequently ac-
cessed during initialization, placing them in DRAM enables fast access to them.
• Long-lived objects in Spark can be roughly classified into two categories: (1) long-lived RDDs

that are frequently accessed during data transformation (e.g., cached for iterative algorithms)
and (2) long-lived RDDs that are cached primarily for fault tolerance. The first category of
RDDs should be placed in the DRAM component of the old generation because they have
long lifespans and DRAM provides desirable performance for frequent access to them. The
second category should be placed in the NVM component of the old generation because they
are infrequently accessed and hence NVM’s large access latency has relatively small impact
on overall performance.
• For Spark programs, there are also short-lived RDDs that store temporary, intermediate re-

sults. These RDDs die and are then reclaimed in the young generation quickly, leading to
frequent accesses to this area. This is another reason why we place the young generation
within DRAM.
• For QuickCached, there is only one long-lived object, i.e., ConcurrentHashMap for storing

the key-value data. Among the hash table, only a small fraction is frequently accessed for
a specific request, which will be identified at runtime with negligible overhead. Thus, the
ConcurrentHashMap should be placed in the NVM component of the old generation, except
the identified frequently accessed fraction.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:6 L. Chen et al.

Fig. 1. The heap structure of an example RDD.

• For QuickCached, a number of temporary objects would be created to process a specific
request. These objects are allocated in the young generation, and should be placed in DRAM
enabling fast accesses.

Based on these observations, we modified both the minor and major GC, which allocate and
migrate data objects, based on their RDD types and the semantic information inferred by our
static analysis, into the spaces that best fit their lifetimes and access patterns. Our runtime system
also monitors the transformations invoked over RDD objects to perform runtime (re)assessment
of RDDs’ access patterns. Even if the static analysis does not accurately predict an RDD’s access
pattern and the RDD gets allocated in an undesirable space, Panthera can still migrate the RDD
from one space to another using the major GC.

1.2.3 Results. We have evaluated Panthera extensively with Spark applications, including
graph computing (GraphX), machine learning (MLlib) and other iterative in-memory computing
applications (Table 4), and QuickCached using Yahoo! Cloud Serving Benchmark (YCSB) [22]. Re-
sults with various heap sizes and DRAM ratios demonstrate that Panthera makes effective use of
hybrid memories— overall, the Panthera-enhanced JVM reduces the memory energy by 22%–34%
with only a 1%–9% execution time overhead for QuickCached, and reduces the memory energy
by 32%–53% with only less than 1% execution time overhead on average for Spark, whereas Write
Rationing [11] that moves read-only RDD objects into NVM incurs a 41% time overhead.

2 BACKGROUND AND MOTIVATION

This section provides necessary background on Apache Spark [6] and QuickCached [3] with mo-
tivating examples that illustrate the access patterns in a Spark program.

2.1 Spark Basics

Spark is a data-parallel system that supports acyclic data flow and in-memory computing. The
major data representation used by Spark is resilient distributed dataset (RDD) [91], which
represents a read-only collection of tuples. An RDD is a distributed memory abstraction partitioned
in the cluster. Each partition is an array of data items of the same type. Each node maintains an
RDD partition, which is essentially a multi-layer Java data structure—a top RDD object references
a Java array, which, in turn, references a set of tuple objects such as key-value pairs. Figure 1
shows the heap structure for an example RDD where each element is a pair of a string (key) and
a compact buffer (value).

A Spark pipeline consists of a sequence of transformations and actions over RDDs. A transfor-
mation produces a new RDD from a set of existing RDDs; examples are map, reduce, or join. An
action is a function that computes statistics from an RDD, such as an aggregation. Spark lever-
ages lazy evaluation for efficiency, that is, a transformation may not be evaluated until an action is

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:7

performed later on the resulting RDD. Before data processing starts, the dependences between
RDDs are first extracted from the transformations to form a lineage graph, which can be used to
conduct lazy evaluation and RDD recomputation upon node failures.

With lazy evaluation, a transformation only creates a (top-level) RDD object without mate-

rializing the RDD (i.e., the point at which its internal array and actual data tuples are created).
Recomputing all RDDs is time-consuming when the lineage is long or when it branches out, and
hence, Spark allows developers to cache certain RDDs in memory (by using the API persist) .
Developers can specify a storage level for a persisted RDD, e.g., in memory or on disk, in the
serialized or deserialized form, and the like. RDDs that are not explicitly persisted are temporary
RDDs that will be garbage-collected when they are no longer used, while persisted RDDs are
materialized and never collected.

The Spark scheduler examines the lineage graph to build a DAG of stages for execution. The
lineage (transformation)-based dependences are classified into “narrow” and “wide”. A narrow
dependence exists from a parent to a child RDD if each partition of the parent is used by at most one

partition of the child RDD. By contrast, a wide dependence exists when each partition of the parent
RDD may be used by multiple child partitions. Distinguishing these two types of dependences
makes it possible for Spark to determine whether a shuffle is necessary. For example, for narrow
dependences shuffling is not necessary, while for wide dependences it is.

A Spark pipeline is split into a set of stages based on shuffles (and thus wide dependences)—each
stage ends at a shuffle that writes RDDs onto the disk and the next stage starts by reading data
from disk files. Transformations that exhibit narrow dependences are grouped into the same stage
and executed in parallel.

2.2 RDD Characteristics

An RDD is, at a low level, an array of Java objects, which are managed by the semantics-agnostic
GC in the JVM. RDDs often exhibit predictable lifetime and memory-access patterns. Our goal is
to pass these patterns down to the GC, which can exploit such semantic information for efficient
data placement. We provide a concrete example to illustrate these patterns.

Figure 2(a) shows the Spark program for PageRank [19], which is a well-known graph algorithm
used widely by search engines to rank web pages. The program iteratively computes the rank of
each vertex based on the contributions of its in-neighbors. Three RDDs can be seen from its source
code: links representing edges from the input graph, contribs containing contributions from
incoming edges of each vertex, and ranks that maps each vertex to its page rank. links is a static
map computed from the input while contribs and ranks are recomputed per iteration of the loop.

In addition to these three developer-defined RDDs visible in the program, Spark generates many
invisible RDDs to store intermediate results during execution. A special type of intermediate RDD
is ShuffledRDD. Each iteration of the loop in the example forms a stage that ends at a shuffle, writing
shuffled data into different disk files. In the beginning of the next stage, Spark creates a ShuffledRDD

as input for the stage. Unlike other intermediate RDDs that are never materialized, ShuffledRDDs
are immediately materialized because they contain data read freshly out of disk files. However,
since they are not persisted, they will be collected when the stage is completed.

In summary, (1) persisted RDDs are materialized at the moment the method persist is called and
(2) non-persisted RDDs are not materialized unless they are ShuffleRDDs or an action is invoked
on them.

2.3 Example

Figure 2(b) shows the set of RDDs that exists within a stage (i.e., iteration) and their depen-
dences. Suppose each RDD has three partitions (on three nodes). The dashed edges represent wide

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:8 L. Chen et al.

Fig. 2. Characteristics of RDDs in Spark PageRank.

dependences (i.e., shuffles) due to the reduction on Line 17. There are totally eight RDDs gener-
ated in each iteration. ShuffledRDD[8], which stems from the reduction on Line 17, is transformed
to ranks via a map transformation. ranks joins with links to form CoGroupedRDD[3], which is then
processed by four consecutive map functions, i.e., f4 – f7, producing contribs at the end. For unma-
terialized (blue) RDDs, the sequence of transformations (e.g., f4 ◦ . . . ◦ f7) is applied to each record
from the source RDD in a streaming manner via iterators to produce a final record.

For links and contribs, the developer invokes the method persist to materialize these RDDs.
The storage levels indicate that links is cached in memory throughout the execution (as it is used in
each iteration) while contribs generated in each iteration is kept in memory but will be serialized
to disk upon memory pressure. ranks is not explicitly persisted. Hence, it is not materialized until
the execution reaches Line 20 where action count is invoked on the RDD object.

The lifetime patterns of these different RDDs fall into two categories. Non-persisted interme-
diate RDDs are short-lived as their data objects are generated only during a pipelined execution.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

l:reduce
l:reduce
l:count


Unified Holistic Memory Management Supporting Multiple Big Data 2:9

Persisted RDDs are long-lived and stay in memory/on disk until the end of the execution. Their
access patterns are, however, more diverse. Objects in an intermediate RDD are accessed at most
once during streaming. Objects in a persisted RDD can exhibit different types of behavior. For
RDDs like links that are used in each iteration, their objects are frequently accessed. In contrast,
RDDs like contribs are persisted primarily for speeding up recovery from faults, and hence, their
objects are rarely used after generated.

2.4 Design Choices

The different characteristics of DRAM and NVM make them suitable for different types of datasets.
DRAM has low capacity and fast access speed, while NVM has large capacity but slow speed.
Hence, DRAM is a good choice for storing small-sized, frequently accessed datasets, while large-
sized, infrequently accessed datasets fit naturally into NVM. The clear distinction in the lifespans
and access patterns of different RDDs makes it easy for them to be placed into different memories
suitable for their behavior. For example, intermediate (blue) RDDs are never materialized. Their
objects are created individually during streaming and then quickly collected by the GC. These
objects are allocated in the young generation and will eventually die there. As a result, the memory
used as young generation is frequently reused by these short-lived objects, which cause very high
read/write frequency to this part of memory. This motivates our design choice of placing the young
generation in DRAM, which matches the conclusion of previous works [11, 76].

Persisted RDDs, in contrast, have all their data objects created at the same time, and thus need
large storage space. Since they are kept alive indefinitely, they should be allocated directly in the
old generation. One category of persisted RDDs includes those that are frequently accessed, like
links; they need to be placed in DRAM. Another category includes RDDs that are rarely accessed
and cached for fault tolerance, like contribs, these RDDs should be placed in NVM. This behav-
ioral difference motivates our choice of splitting the old generation into a DRAM and an NVM
component.

We perform what we suggest on a system with 128-GB memory using Spark-based PageRank as
the benchmark. For this experiment, we allocate 120-GB memory for the Spark and reserve 8-GB
memory for the OS and other services. For the 120-GB Spark memory, 32-GB are DRAM and others
are NVM. (We varied the DRAM ratios in evaluation section.) Figure 2(c) shows the performance
and energy consumption normalized to a system with 120 GB of DRAM. Compared to using only
32-GB DRAM, adding 88-GB NVM to the system provides modest performance benefit (15%) but
leads to 16% higher energy consumption, without proper data placement across DRAM and NVM
(see Unmanaged, Section 7.2). After applying Panthera, RDD links and contribs are placed into
DRAM and NVM, respectively. With such careful placement of data across DRAM and NVM, we
find that (1) performance increases by 42% compared to using only a 32-GB DRAM, and becomes at
the same level of the performance of using 120-GB DRAM; (2) energy consumption is 9% less than
using only a 32-GB DRAM, and 54% less than using a 120-GB DRAM. We conclude that careful
data placement between DRAM and NVM can provide the performance of large DRAM system,
while keeping the energy consumption at the level of a small DRAM system.

2.5 QuickCached Basics

QuickCached is a pure Java implementation of Memcached server based on QuickServer, and it
serves as an in-memory key-value store for small chunks of arbitrary data (strings, objects) from
results of database calls, API calls, or page rendering.

QuickCached supports different backends for organizing and managing the key-value data, and
its default backend leveragesConcurrentHashMap and So f tRe f erence , i.e.,ConcurrentHashMap
for storing the key-value data, and So f tRe f erence for automatically clearing data at the discretion

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:10 L. Chen et al.

of the garbage collector in response to memory demand [3]. When processing each query request,
QuickCached would create a large number of frequently accessed temporary objects, which will
be destroyed when current query request is finished. Therefore, the lifetime of these frequently
accessed data is short. In comparison, the ConcurrentHashMap provides full-lifecyle service and
has long lifetime, however, only a small fraction in ConcurrentHashMap would be frequently ac-
cessed when processing one query request. Therefore, we have an opportunity to identify the
data structure of ConcurrentHashMap statically, and identify its frequently accessed objects at
runtime. Correspondingly, the ConcurrentHashMap should be placed in the NVM component of
the old generation, and the identified frequently accessed objects should be placed in the DRAM
component of the old generation.

3 STATIC INFERENCE OF MEMORY TAGS

Based on our observation of memory access patterns, we developed a simple static analysis that
extracts necessary semantic information for efficient data placement. For Spark, the access patterns
of RDDs can often be identified from the program using them. Our analysis automatically infers,
for each persisted RDD visible in the program, whether it should be allocated in DRAM or NVM.
This information is then passed down to the runtime system for appropriate data allocation. For
QuickCached, our analysis takes user-annotated source codes as input and automatically generates
code for runtime data placement, with the details discussed below.

3.1 Spark Analyzer

Static Analysis. In a Spark program, the developer can invoke persist with a particular storage
level on an RDD to materialize the RDD, as illustrated in Figure 2. We piggyback on the storage
levels to further determine if a persisted RDD should be placed into DRAM or NVM. In particular,
Panthera statically analyzes the program to infer a memory tag (i.e., DRAM or NVM) for each
persist call. Each of the ten existing storage levels (e.g., MEMORY_ONLY), except for OFF_HEAP and
DISK_ONLY, is expanded into two sub-levels, annotated with NVM and DRAM, respectively (e.g.,
MEMORY_ONLY_DRAM and MEMORY_ONLY_NVM). OFF_HEAP is translated directly into OFF_HEAP_NVM because
RDDs placed in native memory are rarely used, while DISK_ONLY does not carry any memory tag.

Our static analysis performs inference based on the def-use information w.r.t. each RDD vari-
able declared in the program as well as the loop(s) in which the variable is defined/used. Our key
insight is that if the variable is defined in each iteration of a computational loop, most of the RDD
instances represented by the variable are not used frequently. This is because Spark RDDs are
often immutable and hence, every definition of the RDD variable creates a new RDD instance at
run time, leaving the old RDD instance cached and unused. Hence, we tag the variable “NVM”,
instructing the runtime system to place these RDDs in NVM. An example is the contribs variable
in Figure 2(a), which is defined in every iteration of the loop—although the variable is also used
in each iteration, the use refers to the most recent RDD instance created in the last iteration while
the instances created in all the other past iterations are left unused.

By contrast, if a variable is used-only (i.e., never defined) in the loop, such as links, we create
a tag “DRAM” for it since only one instance of the RDD exists and is repeatedly used. Panthera
analyzes not only RDD variables on which persist is explicitly called, but also those on which
actions are invoked, such as the ranks variable in Figure 2(a). The tag inferred for an RDD variable
(say v) is passed, at the materialization point of every RDD instance (v refers to), into the runtime
system via automatically instrumented calls to auxiliary (native) methods provided by the Panthera
JVM. We piggyback on a tracing GC to propagate this tag from the RDD object down to each data
object contained in the RDD—when the GC runs, it moves objects with the same tag together into
the same (DRAM or NVM) region (see Section 4).

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:11

One constraint that needs to be additionally considered is the location of the loop relative to the
location of the materialization point of the RDD. We analyze the loop only if the materialization
point precedes or is in the loop. Otherwise, whether the variable is used or defined in the loop does
not matter as the RDD has not been materialized yet. For instance, although the ranks variable is
defined in the loop that starts at Line 17, it does not get materialized until Line 20 after the loop
finishes. Hence, its behavior in the loop does not affect its memory tag, which should actually
depend on its def-use in the loops, if any, after Line 20.

If no loop exists in a program, the program has only one iteration and all RDDs receive an
“NVM” tag as none of them are repeatedly accessed. If there are multiple loops to be considered
for an RDD variable, we tag it “DRAM” if there exists one loop in which the variable is used-only
and that loop follows or contains the materialization point of the RDD. The variable receives an
“NVM” tag otherwise. If all persisted RDDs receive an “NVM” tag at the end of the analysis, we
change the tags of all RDDs to “DRAM”—the goal is to fully utilize DRAM by first placing RDDs in
DRAM. Once DRAM capacity is exhausted, the remaining RDDs, including those with a “DRAM”
tag, will be placed in NVM.

Note that our analysis infers tags only for the RDD variables explicitly declared in the program.
Intermediate RDDs produced during execution are not materialized and thus do not receive mem-
ory tags from our analysis. We discuss how to handle them in Section 4.

The memory tag of an RDD variable is a static approximation of its access pattern, which may
not reflect the behavior of all RDD instances represented by the variable at run time. However, user
code for data processing often has a simple batch-transformation logic. Hence, the static informa-
tion inferred from our analysis is often good enough to help the runtime make an accurate place-
ment decision for the RDD. In case the statically inferred tags do not precisely capture the RDD’s
access information, Panthera has the ability to move RDDs between NVM and DRAM (within the
old generation) based on their access frequencies, when a full-heap GC occurs. The dynamic data
migration frequency is a good indicator for the accuracy of the static analysis. Section 4 provides
a full discussion for this mechanism and Section 7.5 evaluate the accuracy of the static analysis
and the overhead of dynamic migration.

Dealing with ShuffledRDD. Recall from Section 2 that, in addition to the RDDs on which persist

is explicitly invoked, ShuffledRDDs, which are created from disk files after a shuffle, are also materi-
alized. These RDDs are often the input of a stage but invisible in the program code. The challenge
here is where to place them. Our insight is that their placement should depend on the other mate-
rialized RDDs that are transformed from (i.e., depend on) them in the same stage.

For example, in Figure 2(b), the input of the stage are two sets of ShuffledRDDs: [1] and [8].
ShuffledRDD[1] is the RDD represented by links and our static analysis already infers tag “DRAM”
for it. ShuffledRDD[8] results from the reduction in the previous stage. Because ShuffledRDD[8]

transitively produces MapPartitionRDD[7] (represented by contribs) and MapPartitionRDD[7] has
a memory tag “NVM” inferred by our static analysis, we tag ShuffledRDD[8] “NVM” as well.

The main reason is that RDDs belonging to the same stage may share many data objects for
optimization purposes. For example, a map transformation that only changes the values (of key-
value pairs) in RDD A may generate a new RDD B that references the same set of key objects as in
A. If B has already received a memory tag from our static analysis, it is better to assign the same tag
to A so that these shared objects do not receive inconsistent tags and would not need to be moved
from one memory to another when B is generated from A. This is especially beneficial when the
transformation is in a computational loop—a large number of objects would be moved if A and B
have different memory tags.

Figure 3 depicts our alogrithm which assigns the same tag to A and B. We add support that
scans the lineage graph at the beginning of each stage to propagate the memory tag backward,

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

l:reduce
l:count
l:count


2:12 L. Chen et al.

Fig. 3. Algorithm to assign same tags to RDDs which share date objects.

starting from the lowest materialized RDD in the graph that has received a tag from our analysis.
Conflicts may occur during the propagation—an RDD encountered during the backward traversal
may have an existing tag that is different from the tag being propagated. To resolve conflicts, we
define the following priority order: DRAM > NVM, which means that upon a conflict, the resulting
tag is always DRAM. This is because our goal is to minimize the NVM-induced overhead; RDDs
with a “DRAM” tag inferred will be frequently used and putting them in NVM would cause large
performance degradation.

3.2 QuickCached Analyzer

For QuickCached, the core object is the storage object, i.e., the hash table ConcurrentHashMap,
and our QuickCached analyzer requires users annotate this object using the following syntax,
@CoreHashObject, e.g.,

@CoreHashObject

ConcurrentHashMap hashTable;

According to the observation that only a small fraction of the hash table will be frequently
accessed during the processing of one query request, thus the annotation will guide Panthera to
place the hash table in NVM, meanwhile keep only the frequently accessed fraction in DRAM. In
particular, the QuickCached analyzer identifies the annotated hash tableConcurrentHashMap and
infer its memory tag as “NVM” statically.

However, different with Spark applications, the frequently accessed data in
ConcurrentHashMap cannot be statically identified, since it is determined by the incoming
requests at runtime. Thus, the static analysis is inefficient to infer meaningful tags for the objects
stored in ConcurrentHashMap. To address this problem, the QuickCached analyzer introduced a
dynamic mechanism to distinguish the frequently accessed data and tag it as “DRAM” at runtime.
Since data accesses are highly skewed in real-world workloads [16], the frequently accessed data
can be identified by monitoring the data access patterns at runtime. In particular, the analyzer
automatically inserts some instrumentation codes at the callsites of the дet method which is the
interface for accessing the annotatedConcurrentHashMap. The instrumented codes are shown in
Figure 4, serving to leverage a simple LRU strategy to tag the most recently accessed value data
as “DRAM”.

In Spark, the RDD is an abstraction which is an array of Java objects at a low level, and such
semantics facilitates the memory tags analysis and passing in Panthera. However, QuickCached
lacks of such RDD abstraction, therefore, to share the same memory tag passing mechanism with
Spark, we synthesize an RDD to wrap the objects that need to be managed by Panthera.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:13

Fig. 4. Example of QuickCached analyzers instrumentation codes.

In particular, the instrumented codes work as follows. First, rdd_indicator("DRAM") ((Line 1))
declares the synthesized RDD in QuickCached, which will behave as the RDD in Spark. Second,
we allocate a fixed-size auxiliary object array AддDramValues which will be wrapped in the syn-
thesized RDD, to aggregate the most recently accessedvalue data together (Lines 2 and 3). Finally,
the most recently visited elements would be copied into AддDramValues when they are accessed
(Line 10).

With the synthesized RDD, Panthera provides a unified memory-tag-passing mechanism which
can support both Spark and QuickCached, as will be discussed in Section 4.2.

4 THE PANTHERA GARBAGE COLLECTOR

While our static analysis (Section 3) determines where RDDs should be allocated, this information
has to be communicated down to the runtime system, which recognizes only objects, not RDDs.
Hence, our goal is to develop a new GC that, when placing/moving data objects, is aware of (1) the
high-level semantics about where (DRAM or NVM) these RDDs should be placed and (2) the low-
level information about the RDDs to which these objects belong.

We have implemented our new collection algorithm in OpenJDK 8 (build jdk8u76-b02) [8]. In
particular, we have modified the object allocator, the interpreter, the two JIT compilers (C1 and
Opto), and the Parallel Scavenge collector.

4.1 Design Overview

Heap Design. The Panthera GC is based on the Parallel Scavenge collector, which is the default
GC in OpenJDK8. The collector divides the heap into a young and an old generation. As discussed
earlier in Section 1, Panthera places the young generation in DRAM and splits the old generation
into a DRAM component and an NVM component. The off-heap native memory is placed entirely
in NVM. We reserve two unused bits, referred to as MEMORY_BITS, from the header of each object to
indicate whether the object should be allocated into DRAM (01) or NVM (10). The default value for
these bits is 00—objects that do not receive a tag have this default value. They will be promoted to
the NVM component of the old generation if they live long enough. Figure 5 illustrates the heap
structure and our allocation policies.

Allocation Policies. As discussed in Section 3, each materialized RDD carries a memory tag that
comes from our static analysis or lineage-based tag propagation. However, at a low level, an RDD
is a structure of objects, as illustrated in Figure 1, and these objects are created at different points
in the execution. Our goal is to place all objects belonging to the same logical RDD—including
the top object, the array object, tuple objects, and other objects reachable from tuples—together in

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

fig:syntax
fig:syntax
fig:syntax
fig:syntax


2:14 L. Chen et al.

Fig. 5. The Panthera heap and allocation policies. Here RDD array objects refer to RDDs’ backbone arrays

while data objects refer to other non-array objects in an RDD structure.

the space suggested by the RDD’s memory tag, because these objects likely have the same access
pattern and lifetime.

However, this is rather challenging—our static analysis infers a memory tag for each top RDD

object (whose type is a subtype of org.apache.spark.rdd.RDD) in the user program and we do
not know what other objects belong to this RDD by just analyzing the user program. Statically
identifying what objects belong to a logical data structure would require precise context-sensitive
static analysis of both user and system code, which is difficult to do due to Spark’s extremely large
codebase and the scalability issues of static analysis.

Our idea to solve this problem is that instead of attempting to allocate all objects of an RDD
directly into the space (say S) suggested by the RDD’s tag, we allocate only the array object into

S upon its creation. This is much easier to do—Panthera instruments each materialization point
(e.g., before a call to persist or a Spark action) in the user program to pass the tag down to the
runtime system without needing to analyze the Spark system code. Since the array is created at
materialization, the runtime system can just use the tag to determine where to place it. All other
objects in the RDD are not immediately allocated in S due to the aforementioned difficulties in
finding their allocation sites. They are instead allocated in the young generation. Later, we use the
GC to move these objects into S as tracing is performed.

Another important reason why we first allocate the array object into S is because the array is
often much larger than the top and tuple objects. It is much more efficient to allocate it directly
into the space it belongs to rather than allocating it somewhere else and moving it later.

Table 1 shows our allocation policies for different types of objects in an RDD. For RDDs with
tag “DRAM”, array objects are allocated directly into the DRAM component of the old generation
if it has enough space. Otherwise, they have to be allocated in the NVM component. For RDDs
with tag “NVM”, array objects are allocated directly into the NVM component. Intermediate RDDs
without tags are all allocated in the young generation (DRAM). Most of them end up dying there
and never get promoted, while a small number of objects that eventually become old enough will
be promoted to the NVM space of the old generation. Top RDD objects and data tuple objects, as
discussed earlier, are all allocated into the young generation and moved later by the GC to the
spaces containing their corresponding arrays.

4.2 Implementation and Optimization

This subsection describes our implementation techniques and various optimizations.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:15

Table 1. Panthera’s Allocation Policies

Tag Obj Type Initial Space Final Space

DRAM

RDD Top Young Gen. DRAM of Old Gen.
RDD Array DRAM of Old Gen. DRAM of Old Gen.
Data Objs Young Gen. DRAM of Old Gen.

NVM

RDD Top Young Gen. NVM of Old Gen.
RDD Array NVM of Old Gen. NVM of Old Gen.
Data Objs Young Gen. NVM of Old Gen.

NONE

RDD Top Young Gen. Young Gen. or NVM of Old Gen.
RDD Array Young Gen. Young Gen. or NVM of Old Gen.
Data Objs Young Gen. Young Gen. or NVM of Old Gen.

4.2.1 Passing Tags. Right before each materialization point (i.e., the invocation of persist or
a Spark action), our analysis inserts a call to a native method rdd_indicator(rdd, tag), with the
RDD’s top object (rdd) and the inferred memory tag (tag) as the arguments. This method first sets
a thread-local state variable to DRAM or NVM, according to the tag, informing the current thread
that a large array for an RDD will be allocated soon. Next, rdd_indicator sets the MEMORY_BITS of
the top object rdd based on tag. Regardless of where it currently is, this top object will eventually
be moved by the GC to the space corresponding to tag.

The thread then transitions into a “wait” state, waiting for this large array. In this state, the first
allocation request for an array whose length exceeds a user-defined threshold (i.e., a million used
in our experiments) is recognized as the RDD array. Panthera then allocates the array directly
into the space indicated by tag. To implement this, we modified both the fast allocation path,
assembly code generated by the JIT compiler, and the slow path, functions implemented in C++.
After this allocation, the state variable is reset and the thread exits the wait state. If tag is null,
the array is allocated in the young generation, preferably through the thread-local allocation

buffer (TLAB), and the MEMORY_BITS of the top object remains as the default value (00).

4.2.2 Object Migration. There are two major challenges in how to move objects: cross-

generation migration and object compaction. As Panthera piggybacks on a generational GC where a
minor GC is triggered when JVM is unable to allocate space for a new object, objects in the young
generation that survive several minor GCs are deemed “long-lived” and moved into the old gen-
eration. The major GC is triggered when the old generation is full. We leverage this opportunity
to move together objects that belong to the same logical RDD—as discussed earlier, these objects
might not have been allocated in the same space initially.

Minor GC. To do this, we modified the minor collection algorithm in the Parallel Scavenge GC
on which Panthera is built. The existing minor GC contains three tasks: root-task, which performs
object tracing from the roots (e.g., stack and global variables); old-to-young-task, which scans
references from objects in the old generation to those in the young generation to identify (directly
or transitively) reachable objects; and steal-task, which performs work stealing for load balancing.
To support our object migration, we split old-to-young-task into a DRAM-to-young-task and NVM-
to-young-task, which find objects that should be moved into the DRAM and NVM parts of the old
generation, respectively.

For these two tasks, we modified the tracing algorithm to propagate the tag—for example, scan-
ning a reference from a DRAM-based RDD array (with tag “DRAM”) to a tuple object (in the young
generation) propagates the tag to the tuple object (by setting its MEMORY_BITS). Hence, when tracing
is done, all objects reachable from the array have their MEMORY_BITS set to the same value as that of

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:16 L. Chen et al.

the array. In the original GC algorithm, an object does not get promoted from the young to the old
generation until it survives several minor GCs (in this article, we use the threshold of 15). In Pan-
thera, however, we move the objects whose MEMORY_BITS is set as 01 (10) in tracing immediately to
DRAM (NVM) space in the old generation, We refer to this mechanism as eager promotion. Objects
whose MEMORY_BITS is not set, 00, in tracing belong to intermediate RDDs or are control objects not
associated with any RDDs. The migration of these objects follows the original algorithm, that is,
they will be moved only if they survive several minor GCs. During the eager promotion, if there
is a lack of free DRAM space for the old generation, Panthera will put the corresponding objects
into NVM and let major GC adjust the data layout during execution.

Furthermore, we also need to move RDD top objects to the appropriate part of the old generation.
These top objects, whose MEMORY_BITS was set by the instrumented call to rdd_indicator at their
materialization points, are visited when root-task is executed because these objects are referenced
directly by stack variables. We modified the root-task algorithm to identify objects with the set
MEMORY_BITS. These RDD top objects will also be moved to (the DRAM (01) or NVM (10) space of)
the old generation by the minor GC.

Major GC. When a major GC runs, it performs memory compaction by moving objects together
(in the old generation) to reduce fragmentation and improve locality. We modified the major GC
to guarantee that compaction does not occur across the boundary between DRAM and NVM. Fur-
thermore, when the major GC performs a full-heap scan, Panthera re-assesses, for each RDD array
object, where the object should actually be placed based on the RDD’s runtime access frequency.
This frequency is measured by counting, using instrumentation, how many times a method (e.g.,
map or reduce) has been invoked on this RDD object. The RDDs are ranked based on the access
frequency. The most frequently accessed RDDs will be migrated to DRAM if they are misplaced
in NVM. If there isn’t enough DRAM space for these high-ranking RDDs, Panthera will evict the
RDDs with lower access frequencies from the DRAM.

We maintain a hash table that maps each RDD object to the number of calls made on t he object.
Our static analysis inserts, at each such call site, a JNI (Java Native Interface) call that invokes a
native JVM method to increment the call frequency for the RDD object. Frequently (infrequently)
accessed array objects are moved from the NVM (DRAM) space to the DRAM (NVM) space within
the old generation and all objects reachable from these arrays are moved as well. Their MEMORY_BITS
will be updated accordingly. At the end of each major GC, the frequency for each RDD is reset.

The DRAM space of the old generation can be quickly filled up as it is much smaller than the
NVM space. When the DRAM space is full, the minor GC moves all objects from the young gener-
ation to the NVM space of the old generation regardless of their memory tags.

Conflicts. If an object is reachable from multiple references and different tags are propagated
through them, a conflict occurs. As discussed earlier, we resolve conflicts by giving “DRAM” higher
priority than “NVM”. As long as the object receives “DRAM” from any reference, it is a DRAM
object and will be moved to the DRAM space of the old generation.

4.2.3 Card Optimization. In OpenJDK, the heap is divided into many cards, each representing
a region of 512 bytes. Every object can take one or more cards, and the write barrier maintains
a card table that marks certain cards dirty upon reference writes. The card table can be used to
efficiently identify references during tracing. For example, upon a.f = b, the card that contains
the object referenced by a is set to dirty. When a minor GC runs, the old-to-young scavenge task
cleans a card if the target objects of the (old-to-young) references contained in the memory region
represented by the card have been copied to the old generation.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:17

Fig. 6. DRAM access proportion in old generation.

However, if a card contains two large arrays (sayA and B)—e.g.,A ends in the middle of the card
while B starts there immediately—significant inefficiencies can result when they are scanned by
two different GC threads. The card would remain dirty even if all objects referenced by A and B
have been moved from the young to the old generation—neither thread could clean the card due
to its unawareness of the status of the array scanned by another thread. This would cause every
minor GC to scan every element of each array in the dirty card until a major GC occurs.

This is a serious problem for Big Data applications that make heavy use of large arrays. Shared
cards exist pervasively when these arrays are frequently allocated and deallocated. Frequent scan-
ning of such cards with multiple threads can incur a large overhead on NVM due to its higher read
latency and reduced bandwidth. We implemented a simple optimization that adds an alignment

padding for the allocation of each RDD array to make the end of the array align with the end of a
card. Although this leads to space inefficiencies, the amount of wasted space is small (e.g., less than
512 bytes for each array of hundreds of megabytes) while card sharing among arrays is completely
eliminated, resulting in substantial reduction in GC time.

5 PROFILING-GUIDED OPTIMIZATION

As described in Section 3, the core idea behind Panthera is to statically infer RDDs’ memory tags
and pass them to the runtime system to instruct objects migration. In order to analyze the runtime
behavior of the objects more precisely, we propose the profiling-guided optimization (PGO) in
this section.

5.1 Memory Access Distribution

Figure 6 shows the proportion of DRAM memory accesses to total memory accesses in old gener-
ation. Compared with Unmanaged, Panthera increased the proportion of DRAM access by 16.7%
on average, which demonstrates that Panthera’s strategy can effectively increase DRAM access
proportion. In this section, we design a new experiment to analyze the access behaviors of objects
in the old generation with a fine granularity.

We divide the old generation space into chunks of 1-GB size, and plot the access behaviors for
each chunk in Figure 7, using four applications, i.e., LR, TC, GraphX-CC, and MLlib. In partic-
ular, the horizontal axis uses Chunk ID to represent all the chunks, and the vertical axis repre-
sents the access proportion for each chunk, i.e., the number of accesses on the chunk divided by
the number of accesses on all chunks. The chunks in Figure 7 are divided into four categories,
(1) red, frequently accessed chunks and placed in DRAM, (2) yellow, infrequently accessed chunks
but placed in DRAM, (3) blue, frequently accessed chunks but placed in NVM, and (4) green, in-
frequently accessed chunks and placed in NVM. The red and green dots show the chunks that
are correctly recognized and placed. The yellow and blue dots show the chunks that are wrongly
placed.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:18 L. Chen et al.

Fig. 7. Spatial distribution of memory access.

Fig. 8. Example of data sharing.

From the figure, we can see that, comparing with Unmanaged, Panthera can place more fre-
quently accessed chunks on DRAM and infrequently accessed chunks on NVM. Take the MLlib
(Figure 7(d)) for example, among the top-10 frequently-accessed chunks, the Unmanaged approach
allocates two chunks on DRAM, while Panthera allocates five chunks on DRAM. However, there
still exist some frequently accessed chunks that are placed on NVM, as shown by the blue dots,
and some infrequently accessed chunks that are placed on DRAM, as shown by the yellow dots,
which are undesirable. The reason of the data misplacement is that Panthera without PGO treats
the RDD as a whole and can’t distinguish the access frequency difference within the RDDs.

In summary, our key finding on Spark is that the data belonging to the same RDD do not al-
ways exhibit similar access patterns. This finding motivates us to introduce finer-grained chunk
placement decision into Panthera. Therefore, we only need to perform chunk-based profiling to
the data that belonging to the annotated RDD, rather than profiling for all data objects during the
program execution. Therefore, we integrate the coarse-grained RDD-level analysis globally and

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:19

Fig. 9. Memory tags for each chunk after the profile-guided optimization.

fine-grained chunk-based profiling for some special RDDs. This would obtain precise memory
access patterns in a lightweight manner.

5.2 Opportunity for Runtime Optimization

As RDDs are multi-layer Java data structures, and Panthera without PGO analyzes the behavior
at the granularity of RDD, thus all objects belonging to one RDD would be identified to have the
same access pattern and lifetime. However, some objects might be shared by multiple RDDs that
are identified to have different behaviors, and it brings an opportunity for more precisely allocating
the objects across DRAM/NVM.

As discussed in Section 3.1, we discussed an example of object sharing, and statically, we pro-
posed an algorithm and attempted to assign the same memory tag to the RDDs sharing the objects
as shown in Figure 3. However, the attempt might fail, and there might bring conflicts when in-
ferring the tag for the objects from different RDDs. For example, in Figure 8, RDD B is generated
from RDD A, B and A receive the tag of “NVM” and “DRAM”, respectively. Therefore, when B is
generated, the data objects that are shared by A and B will be moved into “NVM”, even if some of
them belong to A which is tagged “DRAM”.

Based on the observation, we have the opportunity to dynamically switch the memory tag for
the shared objects, i.e., using the tag of “NVM” when accessing B, and “DRAM” when accessing
A. For this purpose, we need to refine the analysis, from the granularity of RDDs to chunks, and
leverage the runtime behaviors of the objects.

5.3 Optimization

To characterize the behaviors at the granularity of chunks rather than RDDs and allocate more
frequently accessed chunks to DRAM, we propose a profile-guided approach, which works as
follows: First, we collect the memory access distribution for all the chunks by using VTune, with
the chunk size ofCS , as shown in Figure 7. Second, from the access distribution, we select the top-
K frequently accessed chunks, where K is determined by the DRAM capacity of old generation
C and the chunk size CS using the equation of K = C/CS . Finally, the IDs for the K chunks are
passed to the JVM, and when JVM starts, we bind the top-K chunks to “DRAM”, and other chunks
to “NVM”, by invoking the mbind system call. to determine the memory address for each chunk.
For example, we assume chunk size is 1GB. When a 64-GB heap is used and DRAM to memory
ratio is 1/3 and the nursery space is 1/6 of the heap size, there is 10.66-GB DRAM in old generation.
Then, the IDs for the top 11 frequently accessed chunks are passed to the JVM where the top-10
chunks and the first 0.66 GB of the 11th chunk will be bound into “DRAM”.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:20 L. Chen et al.

Fig. 10. Allocation results of DRAM chunks after the profile-guided optimization.

Figure 9 shows the enhanced Panthera framework with the profile-guided optimization, for
executing the example in Figure 8. In particular, in Spark analyzer, the RDDs B and A are tagged
as “DRAM” and “NVM”, respectively. When JVM starts, the profiled K chunks would be bound
to DRAM, and other chunks to NVM. Therefore, from the perspective of RDD, B would be still
allocated to the DRAM part of the old generation, and A would be still allocated to the NVM part
of the old generation. However, with our underlying chunk binding, only the profiled hotK chunks
of A and B would be actually allocated to DRAM.

Therefore, we leverage the profiled access frequency of the memory chunks, and refine the stat-
ically determined DRAM/NVM partition, to allocate only the real hot chunks on DRAM. Figure 10
shows the results of applying the PGO to Panthera. From this figure, we see that, for the Pan-
thera with PGO, most of the frequently accessed chunks are correctly marked with “DRAM” tags
and placed in DRAM. Compared to the Unmanaged and Panthera without PGO, Panthera with
PGO significantly improved the accumulated access proportion on DRAM of Old generation from
19.55% and 25.2% to 53.5%.

6 DISCUSSION ON APPLICABILITY AND GENERALITY

Panthera’s design includes two key individual mechanisms, i.e., analyzing the data access pat-
terns which is framework-dependent such as the Spark Analyzer and QuickCached Analyzer in
Section 3, and a set of framework-independent APIs that makes pretenuring, migration, and dy-
namic monitoring easy for any in-memory big data system using large arrays as backbone data
structures. In our design, the clear and predictable data access patterns are connections between
different on-top frameworks and the enhanced JVM.

6.1 General Memory Management Policies

The enhanced JVM is general since the data placement and migration mechanism provided by the
Panthera runtime system can be employed to manage memory for any Big Data systems that have
clear and predictable data access patterns. Examples include Apache Hadoop, Apache Flink, or
database systems such as Apache Cassandra.

Panthera determines the data placement and migration via three general policies. These policies
are integrated into the enhanced JVM thus they are generally applicable to other JVM-based big
data systems.

• First, some data structures can be pre-tenured with some tags according to their behaviors
that can be statically determined. Panthera would allocate these data structures directly into
the space indicated by the corresponding tags.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:21

• Second, some data structures are required to collect their behaviors and determine their
placement at runtime. In our current Panthera implementation, the placement of these data
structures depends on their access frequencies and lifetimes, thus Panthera would collect
these runtime characteristics and make the placement decision during the application execu-
tion. Furthermore, Panthera can be extended to integrate new memory access characteristics
and new policies.
• Third, some data structures are required to make finer-grained placement decision. For these

data structures, Panthera leverages a finer-grained chunk-based memory access profiling
approach that enables placements of different chunk at different memory spaces.

However, Panthera currently does not support applications whose data access patterns cannot
be distinguished clearly, e.g., applications with random memory access.

6.2 Framework-Specific Access Pattern Annotations/Analyzers

The memory access patterns are obtained via user annotations together with static analyzers.
Panthera provides two major APIs, one for pre-tenuring data structures with tags and a second

for dynamic monitoring and migration. The first API takes as input an array and a tag, performing
data placement as discussed earlier in Section 4. The tag can come from the developer’s annotations
in the program or from a static analysis that is designed specifically for the framework to be
optimized.

To illustrate, consider Apache Hadoop where both a map worker and a reduce worker may need
to hold large data structures in memory. Some of these data structures are loaded from HDFS as
immutable input, while others are frequently accessed. In the case of HashJoin, which is a building
block for SQL engines, one input table is loaded entirely in memory while the second table is
partitioned across map workers. If map workers are executed in separate threads, they all share
the first table and join their own partitions of the second table with it. The first table is long-lived
and frequently accessed. Hence, it should be tagged DRAM and placed in the DRAM space of the
old generation, while different partitions of the second table can be placed in the young generation
and they will die there quickly.

Panthera’s second API takes as input a data structure object to track the number of calls made on
the object. If this API is used to track the access frequency of the data structure, the data structure
(and all objects reachable from it) would not be pre-tenured (as specified by the first API), but
rather, they are subject to dynamic migration performed in the major GC. We can use this API
to dynamically monitor certain objects and migrate them if their access patterns are not easy to
predict statically.

Use of these above two APIs enables a flexible allocation/migration mechanism that allows cer-
tain parts of the data structure (e.g., for which memory tags can be easily inferred) to be pre-
tenured and other parts to be dynamically migrated. Furthermore, the framework-specific mem-
ory access pattern analyzers would perform def-use analysis to propagate the user annotations to
the runtime system. In Section 3, we demonstrated two individual analyzers for Spark and Quick-
Cached, respectively, which are not easily reusable to other new frameworks.

6.3 Apply Panthera to a New Framework

When extending Panthera to a new framework, we need to consider the following key issues:
First, we might need to introduce new framework-specific annotations so that the runtime

system would have the knowledge about the key data structures. For example, as described in
Section 3, to apply Panthera to QuickCached, the @CoreHashObject annotation is introduced to
illustrate that this is the data structure for the global hash table in QuickCached. In particular, the

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:22 L. Chen et al.

annotations are designed together with the static analyzers and deliver application-level knowl-
edge to the analyzers.

Second, we need to design a new framework-specific static analyzer to expose the memory
access patterns. For example, a new static QuickCached analyzer is developed to identify the core
data structure based on user’s annotations and allocate an auxiliary array. The insight behind
is that only a small fraction of the hashtable is frequently accessed, and the insight guides us to
introduce the auxiliary array to hold these frequently accessed data. Meanwhile, the auxiliary array
would be tagged by the analyzer so that it can be pre-promoted into the DRAM space of the old
generation. Note that the analyzers can leverage user annotations and some framework-specific
heuristics to obtain more precise memory access patterns.

With the framework-specific annotations and analyzers, the underlying runtime mechanism
would leverage the second APIs and dynamically determine the data structure placement and mi-
grations, without any framework-specific modifications. For example, for QuickCached, the run-
time system would collect the frequently accessed data to the auxiliary array, thus these data would
be allocated on DRAM.

7 EVALUATION

We have added/modified 9,186 lines of C++ code in OpenJDK (build jdk8u76-b02) to implement
the Panthera GC, and written 979 lines of Scala code to implement the static analysis for Spark
and 762 lines of Java code for QuickCached.

7.1 NVM Emulation and Hardware Platform

Most of the prior works on hybrid memories used simulators for experiments. However, none
of them support Java applications well. We cannot execute managed-runtime-based distributed
systems on these simulators. There also exist emulators such as Quartz [75] and PMEP [29] that
support emulation of NVM for large programs using commodity multi-socket (NUMA) hardware,
but neither Quartz nor PMEP could run OpenJDK. These emulators require developers to use their
own libraries for NVM allocation, making it impossible for the Panthera GC to migrate objects
without re-implementing the entire allocator and GC from scratch using these libraries.

As observed in [10] and [75], NUMA’s remote memory latency is close to NVM’s latency, and
hence, researchers have used a NUMA architecture as the baseline to measure emulation accuracy.
Following this observation, we built our own emulator on NUMA machines to emulate hybrid
memories for JVM-based Big Data systems.

We followed Quartz [75] when implementing our emulator. Quartz has two major components:
(1) it uses the thermal control register to limit the DRAM bandwidth; and (2) it creates a daemon
thread for each application process and inserts delay instructions to emulate the NVM latency. For

example, if an application’s CPU stall time is S , Quartz scales the CPU stall time to S × NVM_latency
DRAM_latency

to emulate the latency effect of NVM. For (1), we used the same thermal control register to limit the
read/write bandwidth. Like Quartz, we currently do not support different bandwidths for reads and
writes. For (2), we followed Quartz’s observation to use the latency of NUMA’s remote memory to
model NVM’s latency.

An alternative approach to emulating NVM’s latency is to instrument loads/stores during JIT
compilation, injecting a software-created delay at each load/store. The limitation of this approach,
however, is that it does not account for caching effects and memory-level parallelism.

We used one CPU to run all the computation, the memory local to the CPU as DRAM, and the
remote memory as NVM. In particular, DRAM and NVM are emulated, respectively, using two
local and two remote memory channels. The performance specifications of the emulated NVM are

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:23

Table 2. Emulated DRAM and NVM Parameters

DRAM NVM

Read latency (ns) 120 300

Bandwidth (GB/s) 30
10 (limited by the thermal
control register)

Capacity per CPU 100s of GBs Terabytes
Estimated price 5× 1×

the same as those used in [75], reported in Table 2. To emulate NVM’s slow write speed, we used
the thermal control register to limit the bandwidth of remote memory—the emulated NVM is full
duplex with 10 GB/s for read and write bandwidth each. The remote memory’s latency in our
setting is 2.5× of that of the local memory.

Energy Estimation. We followed Lee et al. [49] to estimate energy for NVM. We used Micron’s
DDR4 device specifications [61] to model DRAM’s power. NVM’s energy has a static and dynamic

component. The static component is negligible compared with DRAM [50]. The dynamic compo-
nent consists of the energy consumed by reads and writes. PCM array reads consume about 2.1×
larger energy than DRAM due to its need for high temperature operation [49].

NVM writes consume much more energy than DRAM writes. Upon a row-buffer miss, the energy
consumed by each write has three components: (1) an array write that evicts data from the row
buffer into the bank array, (2) an array read that fetches data from the bank array to the row buffer,
and (3) a row buffer write that writes new data from the CPU last level cache to the row buffer.
Assuming the row-buffer miss ratio is 0.5, we computed these three components separately by
considering the row buffer’s write energy (1.02 pJ/bit), size (i.e., 8K bits for DRAM [61], 32-bit-
wide partial writeback to NVM [49]) and miss rate (0.5), as well as the array’s write-back energy
(16.8pJ/bit × 7.6% for NVM) and read energy (2.47pJ/bit for NVM). The factor of 7.6% is due to Lee
et al.’s optimization [49] that writes only 7.6% of the dirty words back to the NVM array.

CPU’s uncore events, collected with VTune [7], were employed to compute the numbers of reads
and writes. In particular, the events we used were UNC_M_CAS_COUNT.RD and UNC_M_CAS_COUNT.WR.
VTune can also distinguish reads and writes from/to local and remote memories.

7.2 Experiment Setup

We set up a small cluster to run Spark with one master node and one slave node—these two servers
have a special Intel chipset with a “scalable memory buffer” that can be tuned to produce the
2.5× latency for remote memory accesses, which matches NVM’s read/write latency. Since our
focus is not on distributed computing, this cluster is sufficient for us to execute real workloads
on Spark and understand their performance over hybrid memories. Table 3 reports the hardware
configurations of the Spark master and Spark slave nodes. Each node has two 8-core CPU and
the Parallel Scavenge collector on which Panthera was built creates 16 GC threads in each GC to
perform parallel tracing and compaction.

The negative impact of the GC latency increases with the number of compute nodes. As reported
in [57], a GC run on a single node can hold up the entire cluster—when a node requests a data
partition from another server that is running GC, the requesting node cannot do anything until
the GC is done on the second node. Since Panthera can significantly improve the GC performance
on NVM, we expect Panthera to provide even greater benefit when Spark is executed on a large
NVM cluster.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:24 L. Chen et al.

Table 3. Hardware Configuration for Our Servers

Arch NUMA, 4 sockets
QPI 6.4 GT/S, directory-based MESIF

CPU E7-4809 v3 2.00 GHz, 8 cores, 16 HW threads

L1-I 8 way, 32 KB/core, private
L1-D 8 way, 32 KB/core, private

L2 8 way, 256 KB/core, private
L3 20 way, 20 MB, shared

Memory DDR 4, 1,867 MHz, SMI 2 channels

System Configurations. Each CPU has a 128-GB DRAM. We reserved 8 GB of DRAM for the
OS and the maximum amount of DRAM that can be used for Spark is 120 GB. We experimented
with two different heap sizes for the Spark-running JVM (64 GB and 120 GB) and three different
DRAM sizes (1/4, 1/3, and 100% of the heap size; the rest of the heap is NVM). For QuickCached,
we experiemnted a 64-GB heap size with two different DRAM sizes (1/3 and 100% of the heap size).
The configuration with 100% DRAM was used as a baseline to compute the overhead of Panthera
under hybrid memories.

Prior works on NVM often used smaller DRAM ratios in their configurations. For example, Write
Rationing [11] used 1-GB DRAM and 32-GB NVM in their experiments. However, as we deal with
Big Data systems, it would not be possible for us to use a very small DRAM ratio—in our ex-
periments, a regular RDD consumes 10-30-GB memory, and hence, we had to make DRAM large
enough to hold at least one RDD.

The nursery space is placed entirely in DRAM. We have experimented with several different
sizes (1/4, 1/5, 1/6, and 1/7 of the heap size) for the nursery space. The performance differences
between the 1/4, 1/5, and 1/6 configurations were marginal (even under the original JVM), while
the configuration of 1/7 led to worse performance. We ended up using 1/6 in our experiments
for both Spark and QuickCached to achieve good nursery performance and simultaneously leave
more DRAM to the old generation.

Programs and Datasets. For Spark, We selected a diverse set of seven programs. Table 4 lists these
programs, the datasets used to run them and their memory footprints. These are representative
programs for a wide variety of tasks including data mining, machine learning, graph and text
analytics. PR, KM, LR, and TC run directly on Spark; CC and SSSP are graph programs running
on GraphX [33], which is a distributed graph engine built over Spark; BC is a program in MLib, a
machine learning library built on top of Spark. We used real-world datasets to run all the seven
programs. Note that although the sizes of these input datasets are not very large, there can be large
amounts of intermediate data generated during the computation.

To evaluate the performance of QuickCached, we use the Yahoo! Cloud Serving Benchmark

(YCSB) [22]. YCSB is a benchmark suite commonly used to evaluate the performance of cloud
storage services. We run its A, B, C, D, and F workloads after loading the databases with 30 million
records. Each record is 1 KB by default. For each workload, we perform 10 million operations.

Baselines. Our initial goal was to compare Panthera with both Espresso [80] and Write Ra-
tioning [11]. However, neither of them is publicly available. Espresso proposes a programming
model for developers to develop new applications. Applying it to Big Data systems would mean
that we need to rewrite each allocation site, which is clearly not practical. In addition, Espresso
does not migrate objects based on their access patterns.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:25

Table 4. Spark Programs, Datasets and Memory Footprints

Program Dataset Initial Size Footprint

PageRank (PR) Wikipedia Full Dump, German [4] 1.2 GB 63.0 GB

K-Means (KM) Wikipedia Full Dump, English [4] 5.7 GB 49.5 GB

Logistic Regression (LR) Wikipedia Full Dump, English [4] 5.7 GB 63.4 GB

Transitive Closure (TC) Notre Dame Webgraph [2] 21 MB 43.8 GB

GraphX-Connected
Components (CC)

Wikipedia Full Dump, English [4] 5.7 GB 59.1 GB

GraphX-Single Source
Shortest Path (SSSP)

Wikipedia Full Dump, English [4] 5.7 GB 62.2 GB

MLlib-Naive Bayes Clas-
sifiers (BC)

KDD 2012 [1] 10.1 GB 63.1 GB

The Write Rationing GC has two implementations: Kingsguard-Nursery (KN) and Kingsguard-

Writes (NW). KN places the young generation in DRAM and the old generation in NVM. KW
also places the young generation in DRAM. Different from KN, KW monitors object writes and
dynamically migrates write-intensive objects into DRAM. Although we could not directly com-
pare Panthera with these two GCs, we have implemented similar algorithms in OpenJDK. Under
KW, almost all persisted RDDs were quickly moved to NVM. The frequent NVM reads from these
RDDs, together with write barriers used to monitor object writes, incurred an average of 41%
performance overhead for our benchmarks. This is because Big Data applications exhibit different
characteristics from regular, non-data-intensive Java applications.

KN appears to be a good baseline at the first sight. However, implementing it naïvely in the
Parallel Scavenge collector can lead to non-trivial overhead—the reduced bandwidth in NVM can
create a huge impact on the performance of a multi-threaded program; this is especially the case
for Parallel Scavenge that attempts to fully utilize the CPU resources to perform parallel object
scanning and compaction.

To obtain a better baseline, we placed the young generation in DRAM and supported the old
generation with a mix of DRAM and NVM. In particular, we divided the virtual address space of
the old generation into a number of chunks, each with 1 GB, and used a probability to determine
whether a chunk should be mapped to DRAM or NVM. The probability is derived from the DRAM
ratio in the system. For example, in a system where the DRAM-to-memory ratio is 1/4 (1/4 DRAM),
each chunk is mapped to DRAM with 1/4 probability and to NVM with 3/4 probability. Note that
this is common practice [32, 77] to utilize the combined bandwidth of DRAM and NVM. We refer
to this configuration as unmanaged, which outperforms both KN and KW for our benchmarks.

There are also some OS-level-based data migration works, such as Thermostat [9], Translation
Ranger [86], and HeteroOS [43]. We tried to port these frameworks to our emulated NVM platform,
but none of these works fit for the benchmarks we used. For example, when running on Thermo-
stat, the Spark applications always get stuck during the execution and the HeteroOS targets at
the hybrid memory in virtualized environments instead of running on the bare-metal machines as
Panthera does. Translation Ranger targets at speeding up the virtual-to-physical memory address
translation by actively coalescing fragmented pages. It’s an orthogonal optimization to Panthera,
so we didn’t include it in the evaluations. In order to evaluate the OS-level hybrid memory man-
agement policy, we utilize the kernel LRU (Least Recently Used) based paging system to do
the data migration management. We created a ramdisk on the emulated NVM and mount it as
the swap partition. We tuned the performance of the paging system to the best according to the

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:26 L. Chen et al.

Fig. 11. Overall performance comparison between OS-level management and unmanaged. The heap size is

64GB and DRAM to memory ratio is 1/3.

Fig. 12. Overall performance and energy results of Spark under a 64-GB heap; DRAM to memory ratio is 1/3.

state-of-art works [12, 59]. Under this settings, the NVM works as a secondary memory, similar
with the Optane DC Memory Mode [37]. The kernel evicts the least recently used data to NVM and
keeps the most recently used data in DRAM. As Figure 11 shows, the OS-level management policy
is much worse than the unmanaged. Compared to unmanaged, the slowdown of OS-level manage-
ment can reach to up 6.20×. This is because the GC always messes up the data layout placed by
the OS, which cause much more useless data migration overhead, as we described in the Section 1.
Hence, we utilize the unmanaged as baseline in the subsequent evaluations.

7.3 Performance and Energy of Panthera without PGO

Figure 12 reports the overall performance and energy results of Spark when a 64-GB heap is used
and thenDRAM-to-memory ratio is 1/3 (1/3 DRAM). The performance and energy results of each
configuration are normalized w.r.t. those of the 64-GB DRAM-only version. The energy results in
our experiments include the energy consumption of Panthera runtime, but do not include the en-
ergy consumption of the static analyzer and profiling tools. Compared to the DRAM-only version,
the unmanaged version reduces energy by 26.7% with a 21.4% execution time overhead. In contrast,
Panthera reduces energy by 32.3% at a 4.3% execution time overhead.

When the heap size is 120 GB (not shown in Figure 12, but summarized later in Figure 14 and
Figure 15), the unmanaged version reduces energy by 39.7% at a 19.3% execution time overhead.
In contrast, Panthera reduces energy by 47.0% with less than 1% execution time overhead. Clearly,

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:27

Fig. 13. GC performance (64-GB heap).

considering the RDD semantics in data placement provides significant benefits in both energy and
performance.

GC Performance. To understand the GC performance, we broke down the running time of
each program into the mutator and GC time; these results (under the 64-GB heap) are shown in
Figure 13. Compared to the baseline, the unmanaged version introduces performance overhead of
60.4% and 6.9% in the GC and computation, respectively; while for Panthera these two overheads
are, respectively, 4.7% and 4.5%. Under the 120-GB heap, the GC performance overhead of the un-
managed version and Panthera are, respectively, 58.0% and 3.1%. Note that, due to large amounts
of intermediate data generated, the GC is frequently triggered for these programs.

Since the GC is a memory-intensive workload, inappropriate data placement can lead to signif-
icantly higher memory access time and thus a large penalty. The penalty comes from two major
sources. First, NVM’s limited bandwidth (which is about 1/3 of that of DRAM) has a large negative
impact on the performance of Parallel Scavenge, which launches 16 threads to perform parallel
tracing and object copying in each (nursery and full-heap) GC. Given this high degree of par-
allelism, the performance of the nursery GC is degraded significantly when scanning objects in
NVM. Second, object tracing is a read-intensive task, which suffers badly from NVM’s higher read
latency.

Panthera improves the GC performance by pretenuring frequently accessed RDD objects in
DRAM and performing optimizations including eager promotion (Section 4.2.2) and card padding

(Section 4.2.3). Eager promotion reduces the cost of (old-to-young) tracing in each minor GC, while
card padding eliminates unnecessary array scans in NVM, which are sensitive to both latency and
bandwidth. A further breakdown shows that eager promotion, alone, contributes an average of
9% of the total GC performance improvement. The contribution of card padding is much more
significant—without this optimization, the GC time increases by 60% due to the impact of NVM’s
substantially limited bandwidth and increased latency on the performance of parallel card scan-
ning. In fact, this impact is so large that the other optimizations would not work well when card
padding is disabled.

Varying Heaps and Ratios. To understand the impact of the heap sizes and DRAM ratios (DRAM
to total memory), we have conducted experiments with two heap sizes (64 GB, 120GB) and two
DRAM ratios (1/3, 1/4) on four programs PR, LR, CC, and BC. Figure 14 reports the time results of
these configurations. Panthera’s time overheads are, on average, 9.5%, 3.4%, 2.1%, and 0%, respec-
tively, under the four configurations (64 GB, 1/4), (64 GB, 1/3), (120 GB, 1/4), and (120 GB, 1/3). The
overheads for the unmanaged version are 25.9%, 20.9%, 23.9%, and 19.3%, respectively, under these
same four configurations.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:28 L. Chen et al.

Fig. 14. Performance for two DRAM ratios + two heaps.

Fig. 15. Energy for two DRAM ratios + two heaps.

We make two interesting observations. First, Panthera is more sensitive to the DRAM ratio than
the heap size. The time overhead can be reduced by almost 10% when the DRAM ratio increases
from 1/4 to 1/3. The reason is that more frequently accessed RDDs are moved to DRAM, reducing
the memory latency and bandwidth bound of NVM. Another observation is that the unmanaged
version is much less sensitive to DRAM ratio—the time overhead is reduced by only 5% when
the DRAM ratio increases to 1/3. This is because arbitrary data placement leaves much of the
frequently accessed data in NVM, making CPUs stall heavily when accessing NVM.

Figure 15 depicts the energy results for the two heaps and two DRAM/NVM ratios. For the 64-
GB heap, the unmanaged version reduces energy by an average of 32.2% and 26.5%, respectively,
under the 1/4 and 1/3 DRAM ratio, while Panthera reduces energy by 36.0% and 32.7% under
these same ratios. The energy reductions for the 120-GB heap are much more significant—the
unmanaged version reduces energy by 45.7% and 39.7%, respectively, under the 1/4 and 1/3 DRAM
ratios, while the energy reduction under Panthera increases to 51.7% and 47.0% for these two
ratios.

We also evaluate the prices of NVM and DRAM to show the hardware cost savings that benefit
from using the hybrid memory. The price of the cheapest NVM is $7.85 per GB and the cheap-
est DRAM is $16.61 per GB [35]. Compared with DRAM-only, using the hybrid memories with
DRAM ratio 1/3 can reduce 35.2% hardware costs, and even reduce 39.6% when with DRAM ratio
1/4.

Results for QuickCached. Figure 16 reports the overall performance and energy results of
QuickCached when a 64-GB heap is used and DRAM to memory ratio is 1/3 (1/3 DRAM). The
performance and energy results of each configuration are normalized w.r.t. those of the 64-GB
DRAM-only version. Compared to the DRAM-only version, the unmanaged version reduces en-
ergy by 25.0% with a 9.1% execution time overhead. In contrast, Panthera reduces energy by 28.7%
at a 5.2% execution time overhead.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:29

Fig. 16. Overall performance and energy results of QuickCached under a 64-GB heap; DRAM-to-memory

ratio is 1/3.

Fig. 17. GraphX-CC’s memory access bandwidth.

7.4 Memory Access Analysis

NVM has high latency and low bandwidth. In general, the performance penalty caused by high
latency increases with the number of memory accesses. For the same number of memory accesses,
NVM incurs higher performance penalty for applications that have instantaneous bandwidth re-
quirements which are beyond NVM’s bandwidth. Figure 17 depicts the read/write bandwidth for
unmanaged and Panthera on GraphX-CC. Compared to the unmanaged version, Panthera migrates
most of the memory reads/writes from NVM to DRAM and reduces the high instantaneous mem-
ory access bandwidth requirements (i.e., peaks in the figure). Because Panthera allocates/moves
frequently accessed data to DRAM, it reduces unnecessary NVM accesses (Sections 4.2.2 and 4.2.3).

7.5 Overhead of Monitoring and Migration

As discussed in Section 4.2, Panthera performs lightweight method-level monitoring on RDD ob-
jects to detect misplaced RDDs for dynamic migration. This subsection provides a closer examina-
tion of dynamic migration’s overhead.

As we monitor only method calls invoked on RDD objects, we find dynamic monitoring over-
head is negligible, i.e., it is less than 1% across our benchmarks. For example, for PageRank, only
about 300 calls were observed on all RDD objects in a 20-minute execution. The second column
of Table 5 reports the number of calls monitored for each application. For GraphX applications,
which has thousands of RDD calls, the monitoring overheads are still less than 1%.

Dynamic migration (performed by the major GC) rarely occurs in our experiments, as can be
seen from the third column of Table 5. There are two main reasons. First, the frequency of a major
collection is very low because a majority of objects die young and most of the collection work

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:30 L. Chen et al.

Table 5. Dynamic Monitoring and Migration

Program # Calls monitored # RDDs migrated

PR 328 0

KM 550 0

LR 333 0

TC 217 0

CC 2,945 1

SSSP 3,632 1

BC 336 0

is done by the minor GC. Second, for four applications (PR, KM, TC, and LR), our static analysis
results are accurate enough and, hence, dynamic migration is never needed.

We observed that only two RDDs (during the executions of CC and SSSP) were migrated dy-
namically. Note that both CC and SSSP are GraphX applications. Each iteration of the processing
creates new RDDs representing the updated graph and persists them. At the end of each iteration,
the RDDs representing the old graph are explicitly unpersisted. Our static analysis, due to lack of
support for the unpersist call, marks both old and new graph RDDs as hot data and generates a
DRAM tag for all them. These RDD objects are then allocated in DRAM and their data objects are
promoted eagerly to the DRAM space of the old generation. The RDD objects representing the old
graphs, if they can survive a major GC, are migrated to the NVM space of the old generation due
to their low access frequency.

To have better understanding of the individual contributions of pretenuring and dynamic mi-
gration, we have disabled the monitoring and migration and rerun the entire experiments. The
performance difference was negligible (i.e., less than 1%). Hence, we conclude that most of Pan-
thera’s benefit stems from pretenuring, which improves the performance of both the mutator and
the GC. However, dynamic monitoring and migration increases the generality of Panthera’s opti-
mizations, making Panthera applicable to applications with diverse access characteristics.

7.6 Performance and Energy of PGO

To examine the effectiveness of our profiling-guided optimization, we have evaluated Panthera
with PGO enabled using the benchmarks listed in Table 4. We experimented with two heap sizes ,
64 GB and 120 GB, and the nursery space is 1/6 of the heap size while 1/3 of the heap is DRAM. We
compared Panthera w/ PGO against w/o PGO, and also against Unmanaged. Note our profiling is
applied offline, thus it would not introduce extra overhead.

Figure 18 shows the overall performance and energy results when a 64-GB heap is used. The
results are normalized w.r.t. those of the DRAM-only version. Compared with Panthera w/o PGO,
the PGO can reduce the energy by 5.8% with 3.9% less execution time on average. Compared with
64-GB DRAM-only version, Panthera w/ PGO can achieve 36.4% energy reduction at 0.2% exe-
cution time overhead. However, we can see that some applications, such as LR, Graphx-CC, and
Graphx-SSSP, can only get marginal benefits from PGO. There are two basic reasons. First, the
access patterns in the RDDs of these applications are uniform and there is no need to divide the
RDDs into finer chunks. In this situation, Panthera w/o PGO can recognize and migrate the data
to correct place, as shown in Figure 7. Second, some memory accesses patterns, e.g., streaming, on
the RDDs are easy to be recognized. The hardware and OS prefetching mechanisms work well for
the data. In this case, even the Panthera w/ PGO can do a better data placement than Panthera w/o

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:31

Fig. 18. Performance and energy results of Panthera with/without PGO. Heap size is 64 GB.

Fig. 19. Performance and energy results of Unmanaged with/without PGO. Heap size is 64 GB.

Fig. 20. Overall performance and energy results under a 120-GB heap.

PGO by recognizing and migrating chunks with higher access frequency to DRAM, it can’t get too
many benefits.

Our PGO can be decoupled from Panthera and be integrated into the unmanaged version, and
Figure 19 shows the overall performance and energy results when PGO is implemented into un-
managed version. The results are normalized to the 64-GB DRAM-only version. Compared with
Unmanaged w/o PGO, PGO reduces energy cost by 9.6% with 8.7% less execution time on average.
Furthermore, compared with the 64-GB DRAM-only version, Unmanaged w/ PGO can achieve
33.8% energy reduction at 11.8% execution time overhead while Unmanaged w/o PGO reduces
energy by 26.7% with a 21.4% execution time overhead.

Figure 20 shows the overall performance and energy results when a 120-GB heap is used. The
results are normalized to DRAM-only version. With PGO, Unmanaged reduces energy by 44.8%

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:32 L. Chen et al.

Fig. 21. Performance and energy results of Panthera with/without PGO.

with a 10.2% execution time overhead while Panthera reduces 50.1% energy with less than 1%
execution time overhead on average.

PGO Results for QuickCached. Figure 21 reports the performance and energy results when em-
ploying PGO to QuickCached. We used the same experiment configuration as described in Sec-
tion 7.2. The results are normalized w.r.t. those of the DRAM-only version. Compared with Pan-
thera w/o PGO, the PGO reduced 2.9% execution time on average, while the energy consumption
was almost the same. The benefits of PGO for QuickCached is less than for Spark, because: (1) the
PGO was introduced to do finer-grained chunk placement and improve the performance further
based on the static coarse-grained RDD-level analysis. For QuickCached, Panthera inferred the
memory tag for each object at runtime, which is fine-grained already; and (2) the NVM access ra-
tio for QuickCached is less than for Spark, e.g., accounting less than 10% of all the memory access,
because of the biased object access characteristics as described in 2.5.

7.7 Discussion

How Far from the Ideal. For hybrid memories with managed runtime, the ideal solution is to place
each object correctly according to its hotness, and adjust the placement dynamically considering
the cost to do object migration and the benefit of migration. As Big Data systems usually have
billions of objects in their heap during a normal execution, it is hard to profile the execution to
record where each object should be placed, and when to do migration. Panthera introduced a
simplified observation that we can develop a simple static analysis to infer the access pattern of
each coarse-grained data collection, where all objects share the same pattern. In addition, this
simple assumption is accurate enough as stated in 7.5.

The Effects of the Emulated NVM Specifications. Due to the limitations of Quartz, although
most of the emulated latency/bandwidth results match the specifications used in the previous
research [75], there is still some differences with the real NVM hardware, e.g., Optane DC [37].
There are two major differences between the emulated NVM and real NVM hardware. First, the
emulated NVM doesn’t show the asymmetry of NVM in read/write latency and bandwidth. Sec-
ond, the emulated specifications is not exactly the same with the real hardware. For example, the
read/write latencies of our emulated NVM are 300 ns/300 ns against the 305 ns/94 ns of the Optane
DC [37]. However, we emphasize that different NVM technologies have different specifications and
the emulated NVM already shows the performance characteristics of NVM and the performance
difference between the DRAM and NVM. Our comprehensive evaluations on the emulated NVM
can show the negligible overhead and high accuracy of our proposed static/dynamic analysis and

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



Unified Holistic Memory Management Supporting Multiple Big Data 2:33

the effectiveness of our data migration policy. For example, we tuned the emulated NVM read/
write latency from 300 ns/300 ns to 120 ns/120 ns, the baseline, Unmanaged, still has a significant
performance degradation by suffering from the limited read/write bandwidth. Under these settings,
Panthera still outperforms the baseline 11.6% on average. With a fixed 300-ns read/write latency,
we also tuned the read/write bandwidth from 5 GB/s to 12 GB/s (12 GB/s is the bandwidth limit of
our server QPI), Panthera always outperforms the baseline from 32.3% to 11.9% on average.

8 RELATED WORK

Hybrid Memories for Managed Runtime. To our knowledge, Panthera is the first practical work
to optimize data layout in hybrid memories for managed-runtime-based distributed Big Data plat-
forms. Existing efforts [11, 17, 32, 39, 40, 67, 72, 76, 80] that attempt to support persistent Java focus
on regular applications or need to rebuild the platforms.

Inoue and Nakatani [36] identify code patterns in Java applications that can cause cache misses
in L1 and L2. Gao et al. [31] propose a framework including support from hardware, the OS, and
the runtime to extend NVM’s lifetime. Two recent works close to Panthera are Espresso [80] and
Write Rationing [11]. However, they were not designed for Big Data systems. Espresso is a JVM-
based runtime system that enables persistent heaps. Developers can allocate objects in a persistent
heap using a new instruction pnew while the runtime system provides crash consistency for the
heap. Applying Espresso requires rewriting the Big Data platforms (e.g., Spark) using pnew, which
is not practical.

Write Rationing [11] is a GC technique that places highly mutated objects in DRAM and mostly
read objects in NVM to increase NVM lifetime. Like Espresso, this GC focuses on individual objects
and does not consider application semantics. Panthera’s nursery space is also placed in DRAM,
similar to the Kingsguard-Nursery in Write Rationing. However, instead of focusing on individual
objects, Panthera utilizes Spark semantics to obtain access information at the array granularity,
leading to effective pretenuring and efficient runtime object tracking.

Memory Structure. There are two kinds of hybrid-memory structures: flat structure, where
DRAM and NVM share a single memory space, and vertical structure, where DRAM is used as
a buffer for NVM to store hot data. The vertical structure is normally managed by hardware and
transparent to the OS and applications [44, 49, 54, 58, 69, 88, 90, 93]. Qureshi et al. [69] shows that
a vertical structure with only 3% DRAM can reach similar performance to its DRAM-only version.
However, the overhead of page monitoring and migration increases linearly with the working
set [77]. The space overhead e.g., the tag store space of DRAM buffer, can also be high with a large
volume of NVM [60].

Page-Based Migration. A great number of existing works use memory controllers to monitor
page read/write frequency [20, 25, 30, 34, 53, 68, 70, 77, 88, 92] and migrate the top-ranked pages to
DRAM. Another type of hybrid memory, composed of 3D-stacked DRAM and commodity DRAM,
also adapts similar page monitoring policies [28, 38]. However, none of these techniques were
designed for Big Data systems. Hassan et al. [34] show that, for some applications, migrating data
at the object level can reduce power consumption.

For Big Data applications that have very large memory consumption, continuous monitoring
at the page granularity can incur an unreasonable overhead. Page migration also incurs overhead
in time and bandwidth. Bock et al. [18] report that page migration can increase execution time
by 25% on average. Panthera uses static analysis to track memory usage at the RDD granularity,
incorporating program semantics to reduce the dynamic monitoring overheads.

Static Data Placement. There exists a body of work that attempts to place data directly in ap-
propriate spaces based either on their access frequencies [20, 53, 68, 74, 88] or on the result of a

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.



2:34 L. Chen et al.

program analysis [30, 34, 77]. Access frequency is normally calculated using a static data liveness
analysis or offline profiling. Chatterjee et al. [20] place a single cache-line across multiple mem-
ory channels. Critical words (normally the first word) in a cache-line are placed in a low-latency
channel. Wei et al. [77] show that the group of objects allocated by the same site in the source
code exhibit similar lifetime behavior, which can be leveraged for static data placement. Dulloor
et al. [30] classify memory accesses into three patterns and model the access time for a given map-
ping from the data structure with a specific access pattern to different memory types to get the
optimal mapping configuration.

Li et al. [53] develop a binary instrumentation tool to statistically report memory access patterns
in stack, heap, and global data. Phadke and Narayanasamy [68] profile an application’s MLP and
LLC misses to determine from which type of memory the application could benefit the most. Kim
et al. [45] develop a key-value store for high-performance computers with large distributed NVM,
which provides developers with a high-level interface to use the distributed NVM. However, none
of these techniques were designed for managed Big Data systems.

9 CONCLUSION

We present Panthera, the first memory management technique for managed Big Data processing
over hybrid memories. Panthera combines static analysis and GC techniques and profile-guided op-
timization to perform semantics-aware data placement in hybrid memory systems. Our evaluation
shows that Panthera reduces energy significantly without incurring much extra time overhead.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thorough and insightful comments. We are espe-
cially grateful to our shepherd Jennifer Sartor for her feedback, helping us improve the article
substantially.

REFERENCES

[1] 2012. LIBSVM Data: Classification. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

[2] 2017. Notre dame network dataset. http://konect.uni-koblenz.de/networks/web-NotreDame.

[3] 2017. QuickCached. https://github.com/QuickServerLab/QuickCached.

[4] 2017. Wikipedia links, network dataset. http://konect.uni-koblenz.de/networks.

[5] 2018. 3D XPointT M : A Breakthrough in Non-Volatile Memory Technology. https://www.intel.com/content/www/us/

en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html.

[6] 2019. Apache SparkT M . https://spark.apache.org.

[7] 2019. Intel VTuneT M Amplifier. https://software.intel.com/en-us/vtune.

[8] 2019. OpenJDK. https://openjdk.java.net.

[9] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-transparent page management for two-tiered

main memory. In Proceedings of the 22nd International Conference on Architectural Support for Programming Languages

and Operating Systems. 631–644.

[10] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout. 2018. Emulating hybrid memory on

NUMA hardware. CoRR (2018).

[11] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven Eeckhout. 2018. Write-rationing garbage collection

for hybrid memories. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’18). ACM, New York, 62–77.

[12] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Marcos K. Aguilera, Aurojit Panda,

Sylvia Ratnasamy, and Scott Shenker. 2020. Can far memory improve job throughput? In Proceedings of the 15th

European Conference on Computer Systems (EuroSys’20). ACM, New York, Article 14, 16 pages. https://doi.org/10.1145/

3342195.3387522

[13] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018. Bztree: A high-performance latch-free

range index for non-volatile memory. Proc. VLDB Endow. 11, 5 (Jan. 2018), 553–565.

[14] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s talk about storage & recovery methods for non-

volatile memory database systems. In Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data. ACM, New York, 707–722.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://konect.uni-koblenz.de/networks/web-NotreDame
https://github.com/QuickServerLab/QuickCached
http://konect.uni-koblenz.de/networks
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://spark.apache.org
https://software.intel.com/en-us/vtune
https://openjdk.java.net
https://doi.org/10.1145/3342195.3387522


Unified Holistic Memory Management Supporting Multiple Big Data 2:35

[15] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-behind logging. Proc. VLDB Endow. 10, 4 (Nov. 2016),

337–348.

[16] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload analysis of a large-

scale key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on

Measurement and Modeling of Computer Systems. ACM, New York, 53–64.

[17] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence. 1996. An orthogonally persistent Java. SIGMOD

Rec. 25, 4 (Dec. 1996), 68–75.

[18] Santiago Bock, Bruce R. Childers, Rami G. Melhem, and Daniel Mossé. 2014. Concurrent page migration for mobile

systems with OS-managed hybrid memory. In Proceedings of the 11th ACM Conference on Computing Frontiers (CF’14).

ACM, New York, 31:1–31:10.

[19] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. Comput. Netw.

ISDN Syst. 30, 1–7 (April 1998), 107–117.

[20] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang, R. Illikkal, and R. Iyer. 2012. Leveraging hetero-

geneity in DRAM main memories to accelerate critical word access. In Proceedings of the 45th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-45). ACM, New York, 13–24.

[21] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. FlatStore: An efficient log-structured

key-value storage engine for persistent memory. In Proceedings of the 25th International Conference on Architectural

Support for Programming Languages and Operating Systems. 1077–1091.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing. ACM, New York, 143–154.

[23] Intel Corporation. 2015. An introduction to pmemcheck. https://pmem.io/2015/07/17/pmemcheck-basic.html.

[24] Intel Corporation. 2018. Redis. https://github.com/pmem/redis/tree/3.2-nvml.

[25] G. Dhiman, R. Ayoub, and T. Rosing. 2009. PDRAM: A hybrid PRAM and DRAM main memory system. In Proceedings

of the 46th Annual Design Automation Conference (DAC’09). ACM, New York, 664–669.

[26] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, flexible, and comprehensive bug detection for persistent

memory programs. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems. ACM, New York, 503–516.

[27] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. 2019. Performance and protection in the ZoFS

user-space NVM file system. In Proceedings of the 27th ACM Symposium on Operating Systems Principles. ACM, New

York, 478–493.

[28] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P. Jouppi. 2010. Simple but effective heterogeneous

main memory with on-chip memory controller support. In Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis (SC’10). ACM, New York, 1–11.

[29] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff

Jackson. 2014. System software for persistent memory. In Proceedings of the 9th European Conference on Computer

Systems (EuroSys’14). 15:1–15:15.

[30] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram, Nadathur Satish, Rajesh Sankaran,

Jeff Jackson, and Karsten Schwan. 2016. Data tiering in heterogeneous memory systems. In Proceedings of the 11th

European Conference on Computer Systems (EuroSys’16). 15:1–15:16.

[31] Tiejun Gao, Karin Strauss, Stephen M. Blackburn, Kathryn S. McKinley, Doug Burger, and James R. Larus. 2013. Using

managed runtime systems to tolerate holes in wearable memories. In Proceedings of the 34th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI’13). ACM, New York, 297–308.

[32] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen. 2015. NumaGiC: A garbage collector

for big data on big NUMA machines. In Proceedings of the 20th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’15). 661–673.

[33] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX:

Graph processing in a distributed dataflow framework. In Proceedings of the 11th USENIX Conference on Operating

Systems Design and Implementation (OSDI’14). 599–613.

[34] Ahmad Hassan, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. 2015. Software-managed energy-efficient hy-

brid DRAM/NVM main memory. In Proceedings of the 12th ACM International Conference on Computing Frontiers

(CF’15). ACM, New York, 23:1–23:8.

[35] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh Akella. 2020. AUTOTM: Automatic

tensor movement in heterogeneous memory systems using integer linear programming. In Proceedings of the 25th

International Conference on Architectural Support for Programming Languages and Operating Systems. 875–890.

[36] Hiroshi Inoue and Toshio Nakatani. 2012. Identifying the sources of cache misses in Java programs without relying on

hardware counters. In Proceedings of the 2012 International Symposium on Memory Management (ISMM’12). 133–142.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

https://pmem.io/2015/07/17/pmemcheck-basic.html
https://github.com/pmem/redis/tree/3.2-nvml


2:36 L. Chen et al.

[37] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang,

Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel

Optane DC Persistent Memory Module. arXiv:cs.DC/1903.05714.

[38] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, Y. Solihin, and R. Balasubramonian. 2010. CHOP:

Adaptive filter-based DRAM caching for CMP server platforms. In Proceedings of the 16th International Symposium on

High-Performance Computer Architecture (HPCA’10). 1–12.

[39] Mick Jordan. 1996. Early experiences with persistent Java. In The First International Workshop on Persistence and Java.

[40] Mick Jordan and Malcolm Atkinson. 2000. Orthogonal Persistence for the JavaT M Platform: Specification and Rationale.

Technical Report. Mountain View, CA.

[41] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS:

Reducing software overhead in file systems for persistent memory. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles. ACM, New York, 494–508.

[42] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young-ri Choi. 2019. SLM-DB: Single-level key-

value store with persistent memory. In Proceedings of the 17th {USENIX} Conference on File and Storage Technologies

({FAST} 19). 191–205.

[43] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017. HeteroOS: OS design for heteroge-

neous memory management in datacenter. In Proceedings of the 44th Annual International Symposium on Computer

Architecture. 521–534.

[44] Taeho Kgil, David Roberts, and Trevor Mudge. 2008. Improving NAND flash based disk caches. In Proceedings of the

35th Annual International Symposium on Computer Architecture (ISCA’08). 327–338.

[45] Jungwon Kim, Seyong Lee, and Jeffrey S. Vetter. 2017. PapyrusKV: A high-performance parallel key-value store for

distributed NVM architectures. In Proceedings of the International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC’17). 57:1–57:14.

[46] Emre Kultursay, Mahmut Kandemir, Anand Sivasubramaniam, and Onur Mutlu. 2013. Evaluating STT-RAM as an

energy-efficient main memory alternative. In Proceedings of the IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS’13). 256–267.

[47] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam. 2017. High performance metadata integrity pro-

tection in the {WAFL} copy-on-write file system. In Proceedings of the 15th {USENIX} Conference on File and Storage

Technologies ({FAST} 17). 197–212.

[48] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel, and Thomas Anderson. 2017. Strata: A

cross media file system. In Proceedings of the 26th Symposium on Operating Systems Principles. 460–477.

[49] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting phase change memory as a scalable

DRAM alternative. In Proceedings of the 36th Annual International Symposium on Computer Architecture (ISCA’09).

2–13.

[50] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger. 2010.

Phase-change technology and the future of main memory. IEEE Micro 30, 1 (Jan. 2010), 143–143.

[51] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chidambaram. 2019. Recipe: Converting

concurrent DRAM indexes to persistent-memory indexes. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles. 462–477.

[52] Lenovo. 2018. Memcached-pmem. https://github.com/lenovo/memcachedpmem.

[53] Dong Li, Jeffrey S. Vetter, Gabriel Marin, Collin McCurdy, Cristian Cira, Zhuo Liu, and Weikuan Yu. 2012. Identifying

opportunities for byte-addressable non-volatile memory in extreme-scale scientific applications. In Proceedings of the

2012 IEEE 26th International Parallel and Distributed Processing Symposium (IPDPS’12). 945–956.

[54] Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, and Onur Mutlu. 2017. Utility-based hybrid memory

management. In Proceedings of the 2017 IEEE International Conference on Cluster Computing (CLUSTER’17). 152–165.

[55] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli, and Samira Khan. 2020. Cross-failure

bug detection in persistent memory programs. In Proceedings of the 25th International Conference on Architectural

Support for Programming Languages and Operating Systems. 1187–1202.

[56] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable hashing on persistent memory. arXiv

preprint arXiv:2003.07302 (2020).

[57] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. 2016. Taurus: A holistic language runtime system

for coordinating distributed managed-language applications. In Proceedings of the 21st International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS’16). 457–471.

[58] Prasanth Mangalagiri, Karthik Sarpatwari, Aditya Yanamandra, VijayKrishnan Narayanan, Yuan Xie, Mary Jane Irwin,

and Osama Awadel Karim. 2008. A low-power phase change memory based hybrid cache architecture. In Proceedings

of the 18th ACM Great Lakes Symposium on VLSI (GLSVLSI’08). 395–398.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

http://arxiv.org/abs/cs.DC/1903.05714
https://github.com/lenovo/memcachedpmem


Unified Holistic Memory Management Supporting Multiple Big Data 2:37

[59] Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively prefetching remote memory with leap. In Proceedings of

the 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association, 843–857. https://www.usenix.

org/conference/atc20/presentation/al-maruf.

[60] Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and Parthasarathy Ranganathan. 2012. Enabling efficient and

scalable hybrid memories using fine-granularity DRAM cache management. IEEE Computer Architecture Letters 11, 2

(July 2012), 61–64.

[61] Micron. 2017. TN-40-07: Calculating Memory Power for DDR4 SDRAM Introduction. https://www.micron.com/-

/media/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf.

[62] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. 2009. Operating system support for

NVM+DRAM hybrid main memory. In Proceedings of the 12th Conference on Hot Topics in Operating Systems

(HotOS’09). 14–14.

[63] Gaku Nakagawa and Shuichi Oikawa. 2015. NVM/DRAM hybrid memory management with language runtime sup-

port via MRW queue. In Proceedings of the 2015 IEEE/ACIS 16th International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD’15). 357–362.

[64] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam. 2019. Write-optimized dynamic

hashing for persistent memory. In Proceedings of the 17th {USENIX} Conference on File and Storage Technologies ({FAST}
19). 31–44.

[65] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat Alamian, and Onur Mutlu. 2016. Yak:

A high-performance big-data-friendly garbage collector. In Proceedings of the 12th USENIX Conference on Operating

Systems Design and Implementation (OSDI’16). 349–365.

[66] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing Xu. 2015. FACADE: A compiler and runtime

for (almost) object-bounded big data applications. In Proceedings of the 20th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS’15). 675–690.

[67] James O’Toole, Scott Nettles, and David Gifford. 1993. Concurrent compacting garbage collection of a persistent heap.

In Proceedings of the 14th ACM Symposium on Operating Systems Principles (SOSP’93). ACM, New York, 161–174.

[68] Sujay Phadke and Satish Narayanasamy. 2011. MLP aware heterogeneous memory system. In Proceedings of 2011 IEEE

Design, Automation Test Conference in Europe (DATE’11). 1–6.

[69] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009. Scalable high performance main mem-

ory system using phase-change memory technology. In Proceedings of the 36th Annual International Symposium on

Computer Architecture (ISCA’09). 24–33.

[70] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page placement in hybrid memory systems. In Proceed-

ings of the International Conference on Supercomputing (ICS’11). 85–95.

[71] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur Mutiu. 2015. ThyNVM: Enabling

software-transparent crash consistency in persistent memory systems. In Proceedings of the 2015 48th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 672–685.

[72] M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C. Steere, and James J. Kistler. 1994. Lightweight

recoverable virtual memory. ACM Trans. Comput. Syst. 12, 1 (Feb. 1994), 33–57.

[73] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi Hashida, Kazuichi Oe, Yoshiyasu Doi,

Lilian Harada, and Mitsuru Sato. 2018. Managing non-volatile memory in database systems. In Proceedings of the 2018

International Conference on Management of Data. 1541–1555.

[74] Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko, Eiman Ebrahimi, Nas-

taran Hajinazar, Phillip B. Gibbons, and Onur Mutlu. 2018. A case for richer cross-layer abstractions: Bridging the

semantic gap with expressive memory. In Proceedings of the 45th Annual International Symposium on Computer Archi-

tecture (ISCA’18). 207–220.

[75] Haris Volos, Guilherme Magalhaes, Ludmila Cherkasova, and Jun Li. 2015. Quartz: A lightweight performance emula-

tor for persistent memory software. In Proceedings of the 16th Annual Middleware Conference (Middleware’15). 37–49.

[76] Chenxi Wang, Ting Cao, John Zigman, Fang Lv, Yunquan Zhang, and Xiaobing Feng. 2016. Efficient management for

hybrid memory in managed language runtime. In Proceedings of the 16th IFIP International Conference on Network and

Parallel Computing (NPC’16). 29–42.

[77] Wei Wei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen. 2015. Exploiting program semantics to place

data in hybrid memory. In Proceedings of the 2015 International Conference on Parallel Architecture and Compilation

(PACT’15). 163–173.

[78] H. S. P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T. Chen, and M. Tsai. 2012. Metal-oxide RRAM. Proc.

IEEE 100, 6 (June 2012), 1951–1970.

[79] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson. 2010. Phase

change memory. Proc. IEEE 98, 12 (Dec 2010), 2201–2227.

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

https://www.usenix.org/conference/atc20/presentation/al-maruf
https://www.micron.com/-/media/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf


2:38 L. Chen et al.

[80] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, binyu Zang, and Haibing Guan. 2018. Espresso: Brewing

Java for more non-volatility. In Proceedings of the 20th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS’18). 70–83.

[81] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, Zili Shao, and Song Jiang. 2016. NVMcached:

An NVM-based key-value cache. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems. 1–7.

[82] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A hybrid index key-value store for DRAM-NVM memory

systems. In Proceedings of the 2017 {USENIX} Annual Technical Conference ({USENIX} {ATC} 17). 349–362.

[83] Jian Xu and Steven Swanson. 2016. {NOVA}: A log-structured file system for hybrid volatile/non-volatile main mem-

ories. In Proceedings of the 14th {USENIX} Conference on File and Storage Technologies ({FAST} 16). 323–338.

[84] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit Borase, Tamires Brito Da Silva, Steven

Swanson, and Andy Rudoff. 2017. Nova-fortis: A fault-tolerant non-volatile main memory file system. In Proceedings

of the 26th Symposium on Operating Systems Principles. 478–496.

[85] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble page management for tiered memory

systems. ACM, New York. https://doi.org/10.1145/3297858.3304024

[86] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Translation ranger: Operating system support

for contiguity-aware TLBs. In Proceedings of the 46th International Symposium on Computer Architecture. 698–710.

[87] Yanfei Yang, Mingyu Wu, Haibo Chen, and Binyu Zang. 2021. Bridging the performance gap for copy-based garbage

collectors atop non-volatile memory. ACM, New York. https://doi.org/10.1145/3447786.3456246

[88] HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, and Onur Mutlu. 2012. Row buffer locality

aware caching policies for hybrid memories. In Proceedings of the 2012 IEEE 30th International Conference on Computer

Design (ICCD’12). 337–344.

[89] Hanbin Yoon, Justin Meza, Naveen Muralimanohar, Norman P. Jouppi, and Onur Mutlu. 2014. Efficient data mapping

and buffering techniques for multilevel cell phase-change memories. ACM Trans. Archit. Code Optim. 11, 4 (Dec. 2014),

40:1–40:25.

[90] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur Mutlu, and Srinivas Devadas. 2017. Banshee: Bandwidth-

efficient DRAM caching via software/hardware cooperation. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-50). ACM, New York, 1–14.

[91] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory clus-

ter computing. In Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation

(NSDI’12). 15–28.

[92] Wangyuan Zhang and Tao Li. 2009. Exploring phase change memory and 3d die-stacking for power/thermal friendly,

fast and durable memory architectures. In Proceedings of the 2009 18th International Conference on Parallel Architectures

and Compilation Techniques (PACT’09). 101–112.

[93] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy efficient main memory using phase

change memory technology. In Proceedings of the 36th Annual International Symposium on Computer Architecture

(ISCA’09). 14–23.

[94] Omer Zilberberg, Shlomo Weiss, and Sivan Toledo. 2013. Phase-change memory: An architectural perspective. ACM

Comput. Surv. 45, 3 (July 2013), 29:1–29:33.

[95] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance hashing index scheme for persistent

memory. In Proceedings of the13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 461–476.

[96] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. 2019. Efficient lock-free durable sets.

In Proceedings of the ACM on Programming Languages 3, (OOPSLA 2019). ACM, New York, 1–26.

Received November 2020; revised October 2021; accepted January 2022

ACM Transactions on Computer Systems, Vol. 39, No. 1–4, Article 2. Publication date: July 2022.

View publication stats

https://doi.org/10.1145/3297858.3304024
https://doi.org/10.1145/3447786.3456246
https://www.researchgate.net/publication/358363878

