
Optimizing Deep Learning Inference via Global

Analysis and Tensor Expressions

Chunwei Xia
C.Xia@leeds.ac.uk
SKLP, ICT, CAS
UCAS, China

University of Leed, U. K.
China

Jiacheng Zhao∗
zhaojiacheng@ict.ac.cn

SKLP, ICT, CAS
UCAS, China

China

Qianqi Sun
sunqianqi18@mails.ucas.ac.cn

SKLP, ICT, CAS
UCAS, China

China

Zheng Wang
z.wang5@leeds.ac.uk
University of Leeds

U. K.

Yuan Wen
yuan.wen@abdn.ac.uk
University of Aberdeen

U. K.

Teng Yu
sanwan.yu@thewakesystems.com

Thewake Systems, China
China

Xiaobing Feng
fxb@ict.ac.cn
SKLP, ICT, CAS

UCAS
Zhongguancun Laboratory, China

China

Huimin Cui
cuihm@ict.ac.cn
SKLP, ICT, CAS
UCAS, China

China

Abstract

Optimizing deep neural network (DNN) execution is impor-
tant but becomes increasingly difficult as DNN complexity
grows. Existing DNN compilers cannot effectively exploit op-
timization opportunities across operator boundaries, leaving
room for improvement. To address this challenge, we present
Souffle, an open-source compiler that optimizes DNN in-
ference across operator boundaries. Souffle creates a global
tensor dependency graph using tensor expressions, traces
data flow and tensor information, and partitions the compu-
tation graph into subprograms based on dataflow analysis
and resource constraints. Within a subprogram, Souffle per-
forms local optimization via semantic-preserving transfor-
mations, finds an optimized program schedule, and improves
instruction-level parallelism and data reuse. We evaluated
Souffle using six representative DNNmodels on an NVIDIA
A100 GPU. Experimental results show that Souffle consis-
tently outperforms six state-of-the-art DNN optimizers by

∗Jiacheng Zhao is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

delivering a geometric mean speedup of up to 3.7× over
TensorRT and 7.8× over Tensorflow XLA.

CCS Concepts: • Computer systems organization →
Multicore architectures; Single instruction, multiple

data; Neural networks; Heterogeneous (hybrid) sys-

tems; • Software and its engineering → Source code

generation; Application specific development environ-

ments.

Keywords: Deep Neural Network, Compiler Optimization,
Tensor Expression, GPU
ACM Reference Format:

Chunwei Xia, Jiacheng Zhao, Qianqi Sun, Zheng Wang, Yuan Wen,
Teng Yu, Xiaobing Feng, and Huimin Cui. 2024. Optimizing Deep
Learning Inference via Global Analysis and Tensor Expressions.
In Proceedings of ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Con-
ference ASPLOS ’24). ACM, New York, NY, USA, 15 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction

No day goes by without hearing about the success of deep
neural networks (DNNs). Indeed, advanced DNNs have
demonstrated breakthrough effectiveness in solving a wide
range of tasks, from drug discovery [11, 16] and self-driving
cars [28] to e-commerce [26, 59].
A DNN model is typically expressed as a computational

graph using deep learning (DL) programming frameworks
like TensorFlow [2] and PyTorch [41]. By separating the
expression of the computational graph from the implemen-
tation of low-level operators, DL frameworks abstract away

https://orcid.org/0000-0003-2014-5453
https://orcid.org/0000-0001-5228-8972
https://orcid.org/0009-0009-8939-7721
https://orcid.org/0000-0001-6157-0662
https://orcid.org/0000-0002-6747-947X
https://orcid.org/0000-0003-4391-8295
https://orcid.org/0000-0003-2909-7750
https://orcid.org/0000-0002-2491-7679
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA Chunwei Xia et al.

the hardware complexity and have become the standard
method for writing DNN code. However, using high-level
programming abstractions presents significant challenges for
low-level performance optimization, especially during model
inference when deploying a trained model in a production
environment where the response time is crucial [17, 21].
Efforts have been made to perform optimizations across

the operator boundaries to increase parallelism, decrease
memory access traffic or utilize memory bandwidth more ef-
ficiently. One promising approach is operator/kernel fusions,
which involves merging multiple operators into a single
kernel to enable analysis and optimizations across opera-
tors. This line of research includes works using hand-crafted
rules [37], loop analysis [56], or just-in-time compilation [58]
to guide and perform fusions. Typically, these methods use
a bottom-up strategy by first performing operator fusion in
the graph representation to merge multiple operators into a
partition and then generating an optimized kernel for each
partition. However, a key challenge is determining the opti-
mal boundaries of partitions or which operators should be
fused together.
Despite the success of bottom-up approaches to opera-

tor/kernel fusion, optimization opportunities can still be
overlooked. One such issue arises from separating the op-
erator fusion and code generation stages. This can result in
misplaced operators into different kernels, leading to extra
memory access overhead and preventing otherwise possible
optimizations. As we will show in the paper, state-of-the-
art kernel fusion methods can miss important optimization
opportunities, leaving much room for improvement.
We present Souffle, a novel top-down approach for op-

timizing inference across DNN operator boundaries. Un-
like bottom-up strategies, Souffle first processes the whole
computation graph as a single, merged kernel and then di-
vides the graph into partitions, i.e., subprograms, through
a global analysis from the top-level, considering data reuse
in shared memory/registers and the generated instructions
when determining partitioning boundaries. Each partition
would be organized into a kernel. Afterwards, at the bot-
tom level, Souffle performs a series of semantic preserving
transformations for each subprogram to simplify the tensor
expression and eliminate redundant memory access for the
corresponding kernel. To this end, Souffle introduces two
new mechanisms: a tensor-expression-based global analysis to
identify critical partitioning points and a semantic preserving
transformations approach that uses affine transformation to
simplify the tensor expressions of each subprogram. Com-
pared with existing bottom-up fusion approaches, the benefit
of our top-down approach is that it globally determines the
kernel boundaries by considering the generated code of the
kernels.
Tensor-expression-based global analysis. Souffle con-
ducts global dependence analysis on a tensor dependency

graph generated from the entire DNN model. It utilizes ten-
sor expressions (TEs) [12] to encode dataflow information of
operators and tensors. By mapping higher-level operators to
simpler TEs, Souffle performs data-flow analysis and code
optimization around these TEs, simplifying the complexity
of analysis and optimization and resulting in better code.
TEs offer concise semantics, allowing us to translate the task
of analyzing and optimizing complex operators to a more
manageable problem of analyzing and optimizing simpler
mathematical expressions. For instance, a softmax operator
can be represented by two TEs with simpler data dependence
relationships: one is a one-relies-on-many TE (reduction), and
the other is a one-relies-on-one TE (element-wise). Since Souf-
fle’s analysis is conducted on the TEs without making any
assumptions of low-level library calls, it can optimize across
complex operators, even when the operators have complex
data dependency like many-to-many, when other methods
fail to do so.
Semantic-preserving transformation. After the top-level
stage, the computation graph has been divided into multi-
ple subprograms with each subprogram being mapped to a
kernel. However, each subprogram contains a large number
of TEs which would introduce a large number of redundant
memory accesses across these TEs. Therefore, Souffle ap-
plies affine transformations to combine multiple TEs to a
single TE thus eliminating the redundant memory accesses.
This process is performed within the subprograms and relies
on the TE-based global analysis. The transformation is fully
automated and flexible as the tensor expression precisely
describes the mathematical computation of operators in a
simple form.
Putting it all together. Souffle first conducts data-flow
analysis on the tensor dependency graph of the entire DNN
model using TEs. This analysis captures essential informa-
tion such as tensor shapes and live ranges across opera-
tor boundaries, allowing for precise element-wise analysis
to infer data dependence. Souffle then partitions the TEs
into subprograms using compiler heuristics and conducts
local optimization within each subprogram using semantic-
preserving mathematical transformations to reduce memory
accesses. The optimized subprogram schedule is found by
considering the computation characteristics of the subpro-
gram’s TEs. With precise dependence information at the
TE level, Souffle can optimize memory access latency by
reusing tensor buffers and improve instruction-level paral-
lelism by overlapping memory load and arithmetic instruc-
tions. Since Souffle’s code optimizations are based on sub-
programs of fused operators rather than individual operators,
the optimization boundary of operators is eliminated.
Evaluation. We have implemented a working prototype of
Souffle1 on TVM. We evaluate Souffle on six DNN models
1The data and code associated with this paper are openly available at:
https://github.com/SOUFFLE-AE/SOUFFLE.git.

https://github.com/SOUFFLE-AE/SOUFFLE.git

Optimizing Deep Learning Inference via Global Analysis and Tensor Expressions Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA

GEMMGEMM
Atomic

Add
Atomic

Add
Global
Sync

Tensor
Data

Tensor
Data

Computation
Kernel

Element-wise Memory
Operators (e.g., reshape)

Element-wise Memory
Operators (e.g., reshape)

Element-wise Arithmetic
Operator (e.g., add or exp)
Element-wise Arithmetic
Operator (e.g., add or exp)

Reduction Operator
(e.g., reduce_sum)
Reduction Operator
(e.g., reduce_sum)

(c) SOUFFLE (Our approach)

(a) TensorRT Optimization

0

0

0

0

0

0

1

1

1

1 0 1 0 2 2 1 2 432 3 3

divexp

reduce_sum

(b) Apollo Optimization

0

0

0

0

0

0

1

1

1

1 0 1 0 2 2 1 2 432 3 3

(d) Optimizations Across Computation-intensive Kernels

W2I2 O2

GEMM2
I2xW2

Load
Store

Pipeline

Matrix
Mul.

Pipeline

W3O2' O3

GEMM3
O2'xW3

1 0 1 0 20

2 1 2 43 300

W/o Optimization

W2I2 O2

GEMM2
I2xW2

W3 O2' O3

GEMM3
O2'xW3

Souffle Optimization

Read After Write
Dependency

Write After Read
Dependency

Pipeline Execution

Spatial
Reuse

Temporal
Reuse

Temporal
Reuse

Figure 1.How TensorRT (a), Apollo (b) and Souffle (c) map a BERT computation graph into kernels. The Souffle optimization
leads to fewer GPU memory accesses and faster execution time than TensorRT and Apollo.

Table 1. Performance for the generated kernels of Fig. 1.

TensorRT Apollo Souffle

Total execution time(𝜇𝑠) 62.34 179.07 57.73
–Computation-intensive kernels 31.29 61.1 41.77
–Memory-intensive kernels 31.0 117.97 15.96
#Kernels 7 14 1
#Bytes load from global (M) 16.52 27.78 8.87

with diverse and representative model architectures and com-
pare it against six state-of-the-art DL optimizing and kernel
fusion frameworks, including XLA [27], Ansor [57], Ten-
sorRT [38], Rammer [33], Apollo [56], and the MLIR-based
IREE compiler [1]. Our evaluation, performed on an NVIDIA
A100 GPU, shows that Souffle outperforms existing solu-
tions, delivering a geometric mean speedup of up to 3.7×
and 7.8× over TensorRT and XLA, respectively. Souffle is
highly flexible and can fuse operators where state-of-the-art
kernel fusion strategies fail. It is compatible with TensorFlow
and ONNX [13] models, and can be integrated with general
DL compilers like TVM [12, 57].
Contributions. This paper makes the following contribu-
tions:

• It presents a new top-down approach for identifying
and exploiting optimization opportunities across oper-
ator boundaries (Sec. 5);

• It shows how to effectively leverage the global anal-
ysis to perform local optimization at the kernel level
represented as tensor expressions (Sec. 6);

• It demonstrates how low-level tensor expressions can
be employed to perform instruction optimizations be-
yond operator boundaries (Sec. 6.5).

2 Motivation

2.1 Working Example

As a motivation example, consider optimizing a standard
BERT model [14] on an NVIDIA A100 GPU. This model is

based on the Transformer architecture [10, 49] and is using
FP16 for inference. Fig. 1 depicts how TensorRT and Apollo
map operators of a simplified sub-computation graph from
BERT into kernels2. This subgraph contains representative
DNN operators like general matrix multiplication GEMM,
reshape, permutation, element-wise arithmetic operators like
add or exp, and reduction operators like reduce_sum. The
compiler maps these operators to individual kernels, which
significantly impacts performance.

2.2 Performance Evaluation

We measure the resulting kernels using the NVIDIA Nsight
Compute[39]. Table 1 shows that neither TensorRT nor
Apollo can provide an optimal mapping for the evaluated
DNN. The subgraph created by TensorRT and Apollo in
Fig. 1 loads 16.52MB and 27.78MB of data from global
memory, giving an execution time of 62.34𝜇𝑠 and 179.1𝜇𝑠 ,
respectively. A better strategy, which is the one chosen
by our approach, is to refine and map the subgraph into
a single kernel. This strategy reduces the number of
bytes loaded from the global memory to 8.87M with an
execution time of 57.7𝜇𝑠 , translating to 1.1× and 3.1× faster
running time than TensorRT and Apollo, respectively. We
want to highlight that TensorRT has been specifically
tuned for Transformer-based models with close-sourced,
hand-optimized low-level operator implementations (like
GEMM). Therefore, we consider the Souffle improvement
over TensorRT on BERT to be significant given that Souffle
does not have access to some of the NVIDIA-optimized
operator implementations used by TensorRT. Furthermore,
as we will show later in Sec. 8, Souffle also significantly
outperforms other DNN compilers, including XLA and IREE,
on this DNN model.
2Layout transformation kernels are omitted from Fig. 1 to aid clarity.

Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA Chunwei Xia et al.

2.3 Missed Opportunities

After closely examining the profiling data and the kernel
fusion outcomes, we identified several optimization oppor-
tunities that TensorRT and Apollo miss:
Fail to explore optimization between memory- and

compute-intensive kernels. As depicted in Fig. 1, part
of BERT requires to perform element-wise memory opera-
tors, e.g. reshape and permutation (Element-wise memory
operators 2 and 3 in Fig. 1). TensorRT and Apollo leverage
manually crafted rules to fuse adjacent element-wise mem-
ory operators together while both of them fail to further
perform optimization between the fused operators and their
precedent computation operators, e.g. (GEMM) operators
in Fig. 1. Souffle performs optimization between memory-
and compute-intensive kernels, and eventually eliminates
all element-wise memory operators. In summary, manually
crafted rules cannot cover a diverse set of computation pat-
terns and miss the optimization opportunity in this case.
Suboptimal fusion strategy for reduction operators.

Fig. 1(a) and (b) show the suboptimal kernel fusion strategy
employed by TensorRT and Apollo for reduction operators.
Both strategies choose to map the GEMM and the reduction
operator to separate kernels, which requires storing the en-
tire tensor data that reduction operators rely on to expensive
global memory before reduction occurs. Souffle aggres-
sively fuses reduction operators with adjacent computation-
intensive operators, such as R0-2(R for Reduction Opera-
tor) with GEMM0 and GEMM1, as shown in Fig. 1(c). This
is achieved through a two-phase reduction approach: per-
forming partial reduction in a per-block fashion and using
atomicAdd for global reduction. As a result, the entire ten-
sor data can be kept on-chip, with only the partial result
stored in global memory. A global synchronization (e.g. grid
synchronization in CUDA [40]) is inserted to synchronize
running blocks, as shown in Fig. 1(c). This optimization ap-
plies to all reduction operators in Fig. 1. Moreover, Souffle
can cache the output of arithmetic operator 1 on-chip for
reuse in arithmetic operator 2.
Poor optimizations across computation-intensive ker-

nels. Like many other DNN frameworks, TensorRT and
Apollo try to fuse multiple computation-intensive operators
of the same type, but fail to capitalize on the opportuni-
ties across different types of operators. Consider Fig. 1(d)
that shows how two dependent GEMM operators execute
asynchronous memory copies and tensor core computations
when they are grouped to kernels under two different strate-
gies. The first is to map the GEMM operators into two sepa-
rate kernels, as they do not consider fuse compute-intensive
operators. The second is to map them to a single kernel. Ten-
sorRT and Apollo use the former, and Souffle uses the latter.
By putting two GEMMoperators into one single kernel (right
part of Fig.1(d)), Souffle allows the pipeline execution of

loadingW3 of GEMM3 while computing GEMM2. Souffle is
designed to take such cross-operator pipeline optimizations.

2.4 Our Insights

Based on the observations outlined earlier, there is a need to
analyze DNN models to fuse operators, perform automatic
transformations on tensor operations, and optimize within a
fused kernel. A more effective kernel fusion strategy makes
extracting crucial tensor information such as live range and
tensor data reuse possible. This information can then be used
to analyze the fine-grained dependencies at the element-wise
level, leading to better kernel-level optimization.

3 Preliminaries

Souffle utilizes TVM’s tensor expression (TE) [12] as an in-
termediate representation for analysis and optimization. The
TE specifies how output elements are computed from input
tensors. In the TE Program shown in Figure 2, TE0 is an ex-
ample TE for the GEMM, where the rk parameter defines the
reduction axis (i.e., on which dimension of a tensor will be
traversed to perform the reduction), with a reduction index
ranging from 0 to 64. The output tensor O0 is computed us-
ing the compute operation, which specifies the computation
to be performed on each data element and the output shape.
The iteration variables i and j correspond to the output shape
dimensions, and their iteration domains can be inferred nat-
urally. Essentially, TE uses a pure functional language [47]
to describe tensor computation, allowing for individual com-
putation of each output tensor element. Note that our op-
timizations also apply to other DSLs like antares [34] and
tensor comprehension [48] with similar concise semantics
and expressiveness. We choose TVM due to its popularity
and the established toolchain.

4 Overview of Souffle

Souffle is our open-source framework for DNN code opti-
mization. It is designed to overcome the three limitations of
existing DNN inference frameworks identified in Section 2.
It enhances data reuse, optimizes reduction operations, and
enables cross operator boundary optimization. Currently,
it supports TensorFlow models and optimizes DNN infer-
ence on a single NVIDIA GPU. But many of our analyses
and optimizations can be applied to AMD GPU and other
accelerators.
Fig. 2 shows an overview workflow of Souffle, which

takes a model as input and uses TVM to lower the model
down to TE on which we perform analysis and optimization.
TE lowering. For a DNN model, Souffle first lowers each
operator to its corresponding TEs to form a TE program.
Fig. 2 shows that the five operators are lowered to five TEs
marked with TE0 to TE4.
Global computation graph analysis. The lowered TE pro-
gram is passed to the Souffle analysis module. Souffle

Optimizing Deep Learning Inference via Global Analysis and Tensor Expressions Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA

3. Resource Aware Partition → TE Subprogram

4. TE transformation → Optimized TE Subprogram

5. Joint Optimization → TensorIR

 rk = te.reduce_axis((0, 64),)
TE0: O0 = te.compute((64,64), lambda i, j: te.sum(I0[i,rk]*W0[rk,j]),axis=[rk])
TE1: O1 = te.compute((64,64), lambda i, j: te.sigmoid(O0[i, j]))
TE2: O2 = te.compute((64,64), lambda i, j: te.sum(O1[i,rk]*W2[rk,j]),axis=[rk])
TE3: O3 = te.compute((64,64), lambda i, j: O0[i,j] + O2[i,j])
TE4: O4 = te.compute((64,256),lambda i, j: te.sum(O4[i,rk]*W4[rk,j]),axis=[rk])

 rk = te.reduce_axis((0, 64),)
TE0: O0 = te.compute((64,64), lambda i, j: te.sum(I0[i,rk]*W0[rk,j]),axis=[rk])
TE1: O1 = te.compute((64,64), lambda i, j: te.sigmoid(O0[i, j]))
TE2: O2 = te.compute((64,64), lambda i, j: te.sum(O1[i,rk]*W2[rk,j]),axis=[rk])
TE3: O3 = te.compute((64,64), lambda i, j: O0[i,j] + O2[i,j])
TE4: O4 = te.compute((64,256),lambda i, j: te.sum(O4[i,rk]*W4[rk,j]),axis=[rk])

TE0, TE2, TE4: {one-relies-on-many, compute-
intensive}
TE1, TE3: {one-to-one, memory-intensive}

TE0, TE2, TE4: {one-relies-on-many, compute-
intensive}
TE1, TE3: {one-to-one, memory-intensive}

TE transformation for sub-program 0 ([TE0, TE1, TE2, TE3])
TE0: s.reorder(io, jo, ko, ii, jj, ki)
TE1: s = te.create_schedule(O1.op)
TE1: io, ii, jo, jj = s.split(i, j, 16, 16) # Inherit tile shape from TE0's schedule
TE1: s[O1.op].compute_at(jo) # Move computation of TE1 into TE0's loop
………… # All memory-intensive TEs are fused into compute-intensive TEs

TE0 TE2 TE4

1.TE Lowering →TE Program

2. Global Computation Graph Analysis → Analysis Result

{O0: [TE1, TE3]}{O0: [TE1, TE3]}

TE output-input dependency Global Data Reuse

Generated schedule for all compute-intensive TEs, e.g. TE0, TE2 and TE4
Suppose the global synchronization API supports at most 48 blocks
TE0: s = te.create_schedule(O0.op)
TE0: io, ii, jo, jj, ko, ki = s.split(i, j, k,16, 16, 16)
TE0: s.reorder(io, jo, ko, ii, jj, ki)
TE0: SI = s.cache_read(I, ko)
TE0: s.bind(io, blockIdx.x)

TE2 omited for clarity
TE4: s = te.create_schedule(O4.op)
TE4: io, ii, jo, jj, ko, ki = s.split(i, j, k,16, 16, 16)
TE4: s.reorder(io, jo, ko, ii, jj, ki)
TE4: SI = s.cache_read(I, ko)
TE4: s.bind(io, blockIdx.x)

TE0:
{1KB Shared
Memory,
16 blocks < 48}

TE4:
{1KB Shared
Memory,
64 blocks > 48}

1: [TE4]

Partition at TE4:

0: [TE0,
,TE1
,TE2
,TE3]

Sub-
program

Merge TensorIR of compute-intensive TEs into one function
Fn_TE_Subprogam_0(I0, W0, O0, O1, W2, O2):
 shared SI0[16][16], SW0[16][16], SO0[16][16], SO1[16][16]
 shared SI2[16][16], SW2[16][16], SO2[16][16]
 if blockIdx.x < 4 and blockIdx.y < 4: # TE0 & TE1
 for ko in range 4:
 # Global to Shared
 ldg2s(SI0, I0[blockIdx.x*16:blockIdx.x*16+16][...])
 ldg2s(SW0, W0[...][blockIdx.y*16:blockIdx.y*16+16])
 wmma_16x16(SO0, SI0, SW0)
 SO1 = sigmoid(SO0) # SO0 used
 # Shared To Global
 sts2g(O0, SO1)

 grid.sync()

 if blockIdx.x < 4 and blockIdx.y < 4: # TE2 & TE3
 for ko in range 4:
 ldg2s(SI2, O1[blockIdx.x*16:blockIdx.x*16+16][...])
 ldg2s(SW2, W2[…][blockIdx.y*16:blockIdx.y*16+16])
 wmma_16x16(SO2, SI2, SW2)
 SO2=add(SO0,SO2) # SO0 reused
 sts2g(O2, SO2)

Merge TensorIR of compute-intensive TEs into one function
Fn_TE_Subprogam_0(I0, W0, O0, O1, W2, O2):
 shared SI0[16][16], SW0[16][16], SO0[16][16], SO1[16][16]
 shared SI2[16][16], SW2[16][16], SO2[16][16]
 if blockIdx.x < 4 and blockIdx.y < 4: # TE0 & TE1
 for ko in range 4:
 # Global to Shared
 ldg2s(SI0, I0[blockIdx.x*16:blockIdx.x*16+16][...])
 ldg2s(SW0, W0[...][blockIdx.y*16:blockIdx.y*16+16])
 wmma_16x16(SO0, SI0, SW0)
 SO1 = sigmoid(SO0) # SO0 used
 # Shared To Global
 sts2g(O0, SO1)

 grid.sync()

 if blockIdx.x < 4 and blockIdx.y < 4: # TE2 & TE3
 for ko in range 4:
 ldg2s(SI2, O1[blockIdx.x*16:blockIdx.x*16+16][...])
 ldg2s(SW2, W2[…][blockIdx.y*16:blockIdx.y*16+16])
 wmma_16x16(SO2, SI2, SW2)
 SO2=add(SO0,SO2) # SO0 reused
 sts2g(O2, SO2)

Maintain dependency
between TE2&TE3
and TE0&TE1

Aligning parallelisms
of TE0 and TE1

SO0 reused cross TE
boundary

TE1 TE3
GEMM

Element-wise

Figure 2. Example of the Souffle work flow.

performs a two-level analysis on the TE program. At the ten-
sor level, Souffle extracts important tensor information like
the shapes, live range and computation intensity of an TE.
At the element-wise level, Souffle analyzes the fine-grained
dependencies between the output and input tensors of each
TE, as described in Sec.5. Fig. 2 shows the analytical results
including element-wise data dependency and computational
complexity for the five TEs. At the tensor level, it finds that
O0 is accessed by TE1 and TE3, which reveals the data reuse
opportunity across multiple TEs.

Resource aware program partitioning. Souffle analyzes
the tensor dependency graph and uses Ansor [57] to sched-
ule compute-intensive TEs. It partitions the input TE pro-
gram into multiple subprograms based on resource usage
and transforms each subprogram into a computation ker-
nel. For example, in Fig. 2, if the number of blocks of TE4
exceeds the max blocks per wave limit, Souffle partitions
the TE program into two subprograms. The first subprogram
includes TE0, TE1, TE2, and TE3, while the second includes
TE4.
TE transformation. The subprograms together with the
data-flow analysis and tensor information are sent to the TE
transformation module to generate semantic preserving but
optimized TEs. In Fig. 2, the computation of TE1 and TE3 is
scheduled to the inner loop of TE0 and TE2 respectively. TE
schedule and transformation are explained in Sec.6.
Joint optimization and code generation.The transformed
TE subprograms are fed to a scheduler optimizer (Ansor [57]
in our case) to generate a schedule for the TE subprogram.
Next, Souffle composes schedules within a subprogram into
one single function represented by TensorIR [15] for joint
optimizations of instructions and data reuse within the sub-
program. Finally, the optimized subprogram is passed to the
back-end code generator to produce CUDA kernels. In Fig. 2,
ldg2s stands for load from global memory to shared memory,
wmma_16x16 stands for warp matrix multiply-accumulate,
and sts2g stands for storing shared memory to global. Souf-
fle wraps the TE’s corresponding code in if statement to
match the launch dimensions and inserts global sync primi-
tives (grid.sync() in this example) to synchronize data across
thread blocks. SO0 is cached in shared memory and reused
across operator boundaries (TE1 and TE3 in this working
example). We describe these procedures in Sec. 6.5.

5 Global Computation Graph Analysis

Souffle applies two levels of analysis on the TE’s tensor de-
pendency graph. The first identifies data reuse opportunities
and the second extracts the element-wise data dependence.

5.1 Identifying data reuse opportunities

Tensors are often reused both in temporal and spatial di-
mensions, providing opportunities for exploiting data reuse
to eliminate expensive memory operations. As discussed
in Section 2.3, there are two types of tensor reuse in our
working example shown in Fig. 1(a) and Fig. 1(b). First, the
three GEMM0 operators share the same input tensor which
can be reused spatially. Fusing the three GEMM0 operators
into one kernel would allow us to load the input once and
reuse it three times across GEMM0 operators. Such a reuse
opportunity is common in DNNs, including recurrent neural
networks [44], convolution neural networks [29, 45, 55] and
Transformer models [31, 49]. Spatial data reuse optimiza-
tions apply to tensors that are consumed by operators that

Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA Chunwei Xia et al.

have no data dependencies, and the operators will be hori-
zontally transformed as described in Sec. 6.1. The second
type of reuse opportunities can manifest in the temporal
dimension. Temporal data reuse opportunities apply to ten-
sors that are used more than once by operators that have
data dependencies, and guide the tensor reuse optimization
which is described in Sec. 6.5. Consider again our working
example in Fig. 1, the result of element-wise arithmetic op-
erator 1 (termed as A1) is used by two dependent operators
R1 and A2. Once again, accesses to the global memory can
be eliminated if we cache the computation output of A1 on
register/shared memory.
Souffle identifies these data reuse opportunities from

the TE tensor dependency graph at the tensor level by first
traversing the computation graph to gather all the tensors
accessed by more than one TE. It records the set of operators,
𝑠 (𝑡𝑖) = {𝑜𝑝 𝑗 , ..., 𝑜𝑝𝑘 }, that shares with tensor 𝑡𝑖 to enable
code optimizations, as described in Sections 6.

5.2 Intra-TE element-wise dependency analysis

Souffle captures element-wise data dependence from out-
put to input tensors within a TE by defining the iteration
space as the output shape, and the data space as the domain
of iteration and reduction variables for each input tensor.
This simplifies the element-wise dataflow from input to out-
put tensors, as we only need to record the relevant input
tensor elements for a element of the output tensor. The in-
formation also enables reduction operator fusion at the TE
transformation stage, which other optimization tools such
as TensorRT and Apollo do not support.

Our key observation is that the intra-TE data dependence
falls into two categories. Firstly, for TE without a reduction
axis (see also Section 3), each output tensor element relies on
only one input tensor element (termed as one-relies-on-one).
Secondly, for TE with a reduction axis, each output element
relies on all the elements of all the reduction dimensions
of input tensors (termed as one-relies-on-many). With this
observation, we can greatly simplify the dependence anal-
ysis process compared to the source code or operator-level
analysis that other kernel fusion approaches rely on.
We use the polyhedral model notation [46] to denote

element-wise dependencies from output tensor element to
input tensor element(s). Each tensor has an associated Set
𝑆 = [𝑥0, . . . , 𝑥𝑛 : 𝑐0 ∧ . . . 𝑐𝑚] representing its data space, with
𝑥𝑖 as iteration variables and 𝑐 𝑗 as loop bounds from TEs. Re-
lation signifies output elements depending on input tensor
elements. A pair of output and input tensors is tied to a rela-
tion 𝑅 = {[𝑥0, . . . , 𝑥𝑛] ↦→ [𝑦0, . . . , 𝑦𝑚] : 𝑐0, . . . , 𝑐𝑝 }. For TEs
in Fig 2, TE1 gives 𝑅1 = {𝑂1[𝑖, 𝑗] ↦→ 0[𝑖, 𝑗], 0 ≤ 𝑖 < 64, 0 ≤
𝑗 < 64} and TE0 results in 𝑅0 = {𝑂0[𝑖, 𝑗] ↦→ 𝐼0[𝑖, 𝑟𝑘], 0 ≤
𝑖 < 64, 0 ≤ 𝑗 < 64, 0 ≤ 𝑟𝑘 < 64}. TE1 is of type one-relies-on-
one and TE0 is of type one-relies-on-many.

One-relies-on-one TEs. Souffle adopt quasi-affine maps
[7, 36] to represent element-wise dependency for an one-
relies-on-one TE. The mapping from output to input can be
expressed in the form 𝑀−→𝑣 + −→𝑐 where −→𝑣 is the indices of
output tensor, 𝑀 is a constant matrix from Z𝑛×𝑚 and −→𝑐 is
a constant vector from Z𝑚 . Here, 𝑛 is the output tensor’s
dimension and𝑚 is the corresponding input tensor’s dimen-
sion. Note that multiple indices of the output tensor may rely
on the same index of the input tensor. For instance, relation
𝑅1 can be represented as:[

1 1
] [𝑖

𝑗

]
+
[
0 0

]
, 0 ≤ 𝑖 < 64, 0 ≤ 𝑗 < 64 (1)

One-relies-on-many TEs. For a one-relies-on-many TE,
Souffle extracts the region of input tensor accessed by com-
bining the iteration space and the input tensor’s index func-
tion. As the iteration domain of reduction axes is a con-
stant value, the mapping can be expressed in the form of
𝑅 = {[𝑥0, . . . , 𝑥𝑛] ↦→ {[𝑦0, . . . , 𝑦𝑚], [𝑟0, . . . , 𝑟𝑠]} : 𝑐0, . . . , 𝑐𝑝 },
where [𝑟0, . . . , 𝑟𝑠] is a set of reduction variables and their
ranges. For instance, relation 𝑅0 can be expressed as follows:
𝑅0 = {𝑂0[𝑖, 𝑗] ↦→ {𝐼0[𝑖, 𝑟𝑘], [0 ≤ 𝑟𝑘 < 64]}, 0 ≤ 𝑖 < 64, 0 ≤
𝑗 < 64}, where {𝐼0[𝑖, 𝑟𝑘], [0 ≤ 𝑟𝑘 < 64]} represents a set of
elements with 𝑟𝑘 ranging from 0 to 64. We stress that the
element-wise dependency for compute-intensive operators
like GEMM and convolution can be easily analyzed as the
tensor expression explicitly gives the reduction axes.
TEs with one-relies-on-one dependency are then trans-

formed in Sec 6.2, and TEs with one-relies-on-many depen-
dency are then scheduled in Sec 6.3 and Sec 6.4.

5.3 TE characterization

Souffle classifies a TE as memory-intensive (e.g., re-
duce_sum) or computation-intensive (e.g., GEMM) by
estimating the compute-memory ratio for a TE. The ratio is
computed by dividing the number of arithmetic instructions
by the number of memory accesses. As a result, this
ratio unit represents the number of arithmetic operations
per tensor element that is both read and written. In this
work, the classification threshold is empirically set to 3.
A ratio less than the threshold indicates that the TE is
memory-intensive.

5.4 TE Program Partitioning

Souffle tries to generate large kernels to maximize data
reuse and eliminate extra kernel launches. However, using
global synchronization imposes a constraint that the thread
block count cannot exceed the maximum block count per
wave. If this constraint cannot be satisfied, Souffle par-
titions the TE program into multiple TE subprograms. In
Souffle, a TE subprogram serves as the fundamental unit
for high-level TE transformation, middle-end schedule op-
timization, and back-end code generation. It can include
several operators mapped to one GPU kernel.

Optimizing Deep Learning Inference via Global Analysis and Tensor Expressions Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA

shape A1:(4,8),B1:(8, 16),A2:(2, 8),B2:(8, 16)
rk = te.reduce_axis((0, 8), name="rk")
C1 = te.compute((4,16), lambda i,j:te.sum(A1[i,rk]*B1[rk,j],axis=[rk]))
C2 = te.compute((2,16), lambda i,j:te.sum(A2[i,rk]*B2[rk,j],axis=[rk]))

C = te.compute((4+2, 16), lambda i, j:
te.sum(tir.if_then_else(i<4, A1[i, rk], A2[i, rk]) *

tir.if_then_else(i<4, B1[rk, j], B2[rk, j]), axis=[rk]))

Horizontal transformation

Figure 3. Horizontal transformation for two GEMM.

Selection of partitioning point. We only consider
compute-intensive operators as candidate partitioning
points. Compute-intensive TEs typically use much more
shared memory and registers than memory-intensive TEs.
Excessive use of shared memory and registers pushes
the occupancy up, thus limiting the max blocks per
wave and making it infeasible for global synchronization.
Souffle transforms memory-intensive TEs and uses their
compute-intensive producer TE’s schedule to achieve better
data reuse (Sec. 6).
Get required resource. Souffle gets the kernel launch
dimension and the register/shared memory occupancy from
the TE schedule produced by the schedule optimizer (Ansor
in this work).
Partitioning algorithm. Souffle ensures resource con-
straint being satisfied in TE program partitioning using an
analytical model. Given a GPU with a total of 𝐶 register-
s/shared memory, Souffle extracts the maximal launch
dimension 𝑚𝑎𝑥𝑔𝑟𝑖𝑑 and the maximal occupancy of regis-
ter/shared memory𝑚𝑎𝑥𝑜𝑐𝑐 for all compute-intensive TEs in
the current TE subprogram. It then checks whether the con-
straint𝑚𝑎𝑥𝑔𝑟𝑖𝑑 ∗𝑚𝑎𝑥𝑜𝑐𝑐 < 𝐶 can be satisfied for all selected
TEs within a subprogram. Souffle uses a greedy algorithm
to partition the TE program, starting with an empty 𝑆 𝑗 and
using Breadth First Search (BFS) to add TE 𝑡𝑒𝑖 to 𝑆 𝑗 . If adding
𝑡𝑒𝑖 to 𝑆 𝑗 violates the constraint, Souffle creates a new sub-
program 𝑆 𝑗+1 by adding this TE to the new sub-program and
repeats the process until all TEs have been allocated to a
subprogram.

6 Semantic-preserving TE Transformations

After Souffle has collected the reuse and dependence in-
formation as described in Section 5, it then looks at oppor-
tunities to automatically transform the TEs to improve the
performance within each TE subprogram. Souffle supports
both horizontal and vertical TE transformations and trans-
forms TEs in the same subprograms. Horizontal fusion fuses
branches of operators into a single kernel [33, 52]. Hori-
zontal transformation in Souffle is similar to horizontal
fusion and is applied to branches of independent TEs. Verti-
cal transformation is similar to vertical fusion [37, 58] and is
applied to multiple consecutive TEs with a one-relies-on-one
data dependence. We stress that our horizontal and vertical
transformations are more flexible than the fusion strategies

A = te.placeholder((4, 8))
B = te.compute((4,8),lambda i,j:

tir.if_then_else(A[i,j]>0, A[i,j], 0)) # Relu
C = te.compute((2,4),lambda i,j:B[2*i,j]) # Strided_slice
D = te.compute((4,2), lambda i,j:C[j,i]) # Permute

Semantic preserving TE
D = te.compute((4,2), lambda i,j:

tir.if_then_else(A[j, 2*i]>0, A[j,2*i], 0))

Vertical transformation

Before
transformation

After
transformation

Figure 4. Example of vertical TE transformation.

used by IREE and Rammer [33], which will not fuse oper-
ators with one-relies-on-many operators into one kernel.
Furthermore, semantic-preserving transformation ensures
the preservation of arithmetic operations(e.g. add, exp) while
satisfying data dependence requirements. In contrast, some
transformations used by other DNN optimization approaches
may not preserve the semantics. For example, TASO [20] op-
timizes the DNN graph by subgraph substitution and might
replace add with a concat+convolution.

6.1 Horizontal transformation for independent TEs

Souffle tries to transform multiple independent TEs to a
single TE to increase parallelism. Souffle first compares the
output tensor’s shape for each independent TEs and tries
to concatenate them as a single TE. Souffle concatenates
output tensors from multiple independent TEs to one as
each TE can only produce one output tensor. Souffle adds
predicates based on the region of output and rewrites the
TE. Subsequently, Souffle then assesses whether these TEs
consume the same input tensor. Notably, the opportunity
for tensor reuse, as discussed in Sec 5.1, is examined. Con-
sequently, the shared tensor only needs to be loaded once
within the generated kernel. Therefore both the number of
kernel and global memory transactions can be reduced. Fig-
ure 3 gives an example of the horizontal TE transformation,
both TEs share the same reduction variable, 𝑟𝑘 . The output
of the first and the second TEs are (4, 16) and (2, 16) and
can be concatenated on the second axis to a single tensor
with shape (6, 16). If the outputs of independent TEs can not
be concatenated, it adds an if_else statement to select the
corresponding input tensor for concatenated TEs, similar to
Rammer [33].

6.2 Vertical transformation for one-relies-on-one

TEs

Souffle vertically transforms TEs with one-relies-on-one
data dependence to one TE to reduce the generated kernels
and reuse data on registers. This is enabled by the quasi-
affine maps representation (Sec 5.2). To this end, Souffle
first transforms all one-relies-on-one TEs by applying the
index mapping function from the child TEs to their parent
TEs. It then applies the index mapping functions and creates
a single semantic preserving TE. Assume we have 𝑛 TEs, 𝑡𝑒0,
𝑡𝑒1, · · · , 𝑡𝑒𝑖 , · · · , 𝑡𝑒𝑛−1, where the output of 𝑡𝑒𝑖 is the input of

Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA Chunwei Xia et al.

𝑡𝑒𝑖+1. The mapping function can be expressed as 𝑓𝑖 (−→𝑣𝑖) for
𝑡𝑒𝑖 . The transformed TE’s mapping function from 𝑡𝑒𝑖+1 to 𝑡𝑒𝑖
can then be computed using the following function:

𝑓𝑖+1,𝑖 (−→𝑣𝑖) = 𝑓𝑖+1 (𝑓𝑖 (−→𝑣𝑖)) = 𝑀𝑖+1 × (𝑀𝑖 + −→𝑐𝑖) + −−→𝑐𝑖+1 (2)

For the example in Figure 4, the index mapping function of
three TEs,𝐴, 𝐵 and𝐶 , can be converted to a single mathemat-
ically equivalent function - effectively reducing the number
of TE by 3x - as:[

0 1
1 0

] [
2 0
0 1

] [
1 0
0 1

] [
𝑖

𝑗

]
⇒

[
0 1
2 0

] [
𝑖

𝑗

]
Using the method described above, Souffle iteratively

refines multiple one-relies-on-one TEs from a set of consecu-
tive TEs until no further possible refinements can be found.
It then applies a schedule from it’s compute-intensive par-
ent TE to attach the memory-intensive one-relies-on-one TEs
to compute-intensive TE, described in the next subsection.
Compared to the hand-crafted transformation rules used by
TesorRT, Apollo and Ansor, our semantic-preserving trans-
formation has a better generalization ability.

6.3 Schedule TEs

Souffle uses Ansor to generate optimized schedules for
compute- and memory-intensive TEs. Note we have already
generated a schedule for compute-intensive TEs during TE
program partitioning in Sec. 5.4. It propagates the compute-
intensive producer’s schedule for memory-intensive TEs to
maximize data reuse. For one-relies-on-one TEs, Souffle first
schedules them based on their compute-intensive TEs tile
size, then safely inlines them with their producer’s compute
statement. For one-relies-on-many TEs, Souffle reduces lo-
cally to reuse the producer’s data on shared memory/register,
then uses atomic primitives to reduce across thread blocks.

6.4 Merging TEs Schedule

After scheduling TEs, Souffle merges the schedules of TEs
within a subprogram to create a holistic function using Ten-
sorIR [15]. It adds predicates if the launch dimension of TEs
differs and inserts global sync primitives between TEs with
one-relies-on-many dependency. Finally, it performs several
optimizations described in the next section.

6.5 Optimizations within a Subprogram

Souffle supports two types of optimizationswithin a TE sub-
program. The first is instruction-level optimization aiming
to overlap asynchronous GPUmemory loads with arithmetic
instructions. Note that this pipeline execution is scheduled
across TEs and without global data dependency analysis the
optimization can not be done. The second is to reuse tensor
buffers across TEs (and potentially across multiple original
operators). Souffle performs subprogram-level optimiza-
tion after TE schedules within a subprogram have been gen-
erated by the underlying scheduler (Ansor in this work). It

utilizes the global computation dependency analysis results
(Sec. 5) to apply the two optimizations.
Instruction-level optimization. Souffle regroups instruc-
tions within a fused subprogram containing multiple original
operators to execute memory and arithmetic instructions in
parallel. This is accomplished by the scheduling load/store
and computation instructions for pipeline execution across
operator boundaries. For instance, in the BERT model dis-
cussed in Section 2.1 and Figure 1(d), the Souffle-generated
schedule issues NVIDIA instructions LDGSTS.E.BYPASS.128
and HMMA.16818.F16 in parallel, where the former instruc-
tion copies 128 bits from the GPU global memory to shared
memory, and the latter computes GEMM on NVIDIA tensor-
cores.
Tensor reuse optimization. Souffle maximizes tensor
buffer reuse across TEs with a simple software-managed
cache, using a Least Recently Used (LRU) policy to replace
tensor buffers (e.g., matrices and vectors) from shared mem-
ory at runtime. It scans instructions linearly until shared
memory is exhausted, spilling the shared memory to global
memory and adding a memory barrier if the shared memory
is exhausted.

6.6 Put it all together

Algorithm 1 outlines TE transformation. It takes TE
program and the corresponding analysis results: 𝑂𝑅

(one-relies-one-one TEs),𝑀𝑅 (one-relies-on-many TEs),𝑀𝐼

(memory-intensive TEs), 𝐶𝐼 (compute-intensive TEs), 𝑇𝑅
(temporal reuse tensor and TE tuples), and 𝑆𝑅 (spatial reuse
tensor tuples). It partitions TEs based on compute-intensive
TEs’ schedule against resource limits (lines 2-9). Then,
it horizontally transforms and optimizes spatial reuse
through vertical transformation within each partition (lines
11-12). It propagates compute-intensive TEs’ schedules to
memory-intensive TEs and merges schedules within each
sub-program (lines 13-18). Finally, it optimizes tensor reuse
through temporal data reuse and across original operator
boundaries (lines 19-21).

6.7 Implementation Details

We implemented Souffle with 10K lines of C++ and 1K
lines of Python code. We integrated Souffle with TVM [12]
using Ansor [57] as its schedule optimizer. However, Souf-
fle can work with other schedulers compatible with TEs.
Souffle supports element-wise operators, broadcasts, reduc-
tions (including reduce_sum, GEMM and Conv), reorganized
operators like reshape and shuffle operators like transpose.
Souffle does not support non linear algebra operators like
TopK or Conditional. We use direct convolution which is the
default implementation of Ansor.

Optimizing Deep Learning Inference via Global Analysis and Tensor Expressions Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA

Algorithm 1: Semantic-preserving TE transforma-
tion
Input: TE program 𝑃 , analysis results 𝑂𝑅,𝑀𝑅,𝑀𝐼 ,

𝐶𝐼 , 𝑆𝑅, 𝑇𝑅
Output: Generated Schedule 𝑠𝑐ℎ

1 sch = {}; 𝑆𝑃 = ∅;
2 for 𝑒 in BFS(𝑃) do
3 if 𝑒 in 𝐶𝐼 then

4 sch[e] = auto_schedule(e);
5 if resource(sch[e])>C then

6 (𝑆𝑃𝑖 , 𝑃) = split(𝑃 , e); 𝑆𝑃 = 𝑆𝑃 ∪ 𝑆𝑃𝑖 ;
7 end

8 end

9 end

10 for 𝑆𝑃𝑖 in 𝑆𝑃 do

11 𝑆𝑃𝑖 = horizon_trans(e, 𝑆𝑃𝑖) for 𝑒 in 𝑆𝑃𝑖 and 𝑒 in

𝑆𝑇 ;
12 𝑆𝑃𝑖 = verti_trans(e, 𝑆𝑃𝑖) for 𝑒 in 𝑆𝑃𝑖 and 𝑒 in 𝑂𝑅;
13 for 𝑒 in 𝑆𝑃𝑖 and 𝑒 in 𝐶𝐼 do

14 for 𝑒𝑖 in dominated_by(e) and 𝑒𝑖 in𝑀𝐼 do

15 𝑠𝑐ℎ[(𝑒, 𝑒𝑖)] =
propagate_sch(𝑒𝑖 , 𝑠𝑐ℎ[𝑒], 𝑆𝑃𝑖);

16 mark 𝑒𝑖 has been scheduled;
17 end

18 𝑠𝑐ℎ[𝑆𝑃𝑖] = 𝑠𝑐ℎ[𝑆𝑃𝑖] ∪𝑠𝑐ℎ[(𝑒, 𝑒𝑖)];
19 end

20 for 𝑒 in 𝑇𝑅 do

21 𝑠𝑐ℎ[𝑆𝑃𝑖] = optimize_tensor_reuse(e,
𝑠𝑐ℎ[𝑆𝑃𝑖]);

22 end

23 end

Table 2. DNN models and datasets used in our evaluation.

Model (Dataset) Model parameters

ResNeXt (ImageNet) #layers:101, bottleneck width: 64d
EfficientNet (ImageNet) Efficient-b0 from the source publication
Swin-Trans. (ImageNet) Base version, patch: 4 and window size: 7
BERT (SQuAD) Base version with 12 layers from TensorRT
LSTM (synthetic) input length: 100, hidden size: 256, layer: 10
MMoE (synthetic) We use the base model from [32]

7 Experimental Setup

7.1 Evaluation Platform and Workloads

Platform. Our evaluation platform is a GPU server with a
dual-socket 20-core, 2.50 GHz Xeon Gold 6248 CPU, 768GB
of DDR4 RAM, and a 40GB NVIDIA A100 GPU. The server
runs Ubuntu 18.04.5 with Linux kernel 5.4.55. We use CUDA
version 11.7 with “-O3" as the compiler option.

DNN workloads. We evaluated Souffle on representative
and diverse DNN workloads in Table 2. These include natu-
ral language processing (BERT [14]), computer vision (Swin-
transformer [31] - Swin-trans. for short) and knowledge
discovery (MMoE [32]) that implements the latest mixture-
of-expert DNN. These also include classic convolutional and
recurrent networks like ResNeXt [55] and LSTM [18]. We
use single-precision floating-point (FP32) for all operators,
except for GEMM for which we use half-precision floating-
point (FP16) to use the tensor cores. we target model infer-
ence and set the batch size to one.

7.2 Competing Baselines

We compare Souffle against six strong baselines:
XLA (Tensorflow v2.10). The TensorFlow XLA compiler
can fuse DNN operators like point-wise and reduction op-
erators and performs optimizations on the fused operator.
Unlike Souffle that performs analysis and optimizations on
TEs, XLA performs analysis on its high-level operators(HLO).
TensorRT (v8.2). This GPU-vendor-specific framework op-
timizes the inference of DNNs on NVIDIA GPUs [38].
Ansor(TVM v0.8). This state-of-the-art DNN optimizer
builds upon TVM. It uses auto-tuning techniques to find
good tensor schedules from hand-crafted templates.
Rammer (v0.4). This DNN compiler is also known as NNFu-
sion [33]. It generates a spatial-temporal schedule at compile
time to minimize scheduling overhead and exploit hardware
parallelism through inter- and intra-operator co-scheduling.
Apollo. This represents the state-of-the-art fusion frame-
work for inference optimization [56]. Apollo considers both
memory- and compute-bound tensor operators for kernel
fusions and uses hand-crafted rules to exploit parallelism
between independent tensor operators.
IREE(released on 30 Dec. 2022). The intermediate rep-
resentation execution environment (IREE) builds upon the
LLVM MLIR project [1, 30]. IREE is designed to lower DNN
models to MLIR dialects to optimize model inference. IREE
utilizes the linalg dialect to perform the operator fusion,
which supports loop affine fusion optimization and global
analysis.

7.3 Performance Report

We use NVIDIA Nsight Compute to profile DNN model’s
computation latency and record performance metrics. We
found that the variance across different runs is less than 2%
and only reports the geometric mean.

8 Experimental Results

In this section, we first present the overall results of Souffle
and the competing approaches, showing that Souffle out-
performs all other schemes across evaluated DNN models
(Section 8.1). We then quantify the contribution of individ-
ual optimizations to the performance improvement for each

Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA Chunwei Xia et al.

Table 3. End-to-end model runtime (𝑚𝑠) - lower is better.

Model XLA Ansor TRT Rammer Apollo IREE Ours

BERT 2.55 2.31 1.30 2.19 3.29 2.22 1.22

ResNeXt 8.91 20.50 24.82 11.69 22.80 314.8 4.43

LSTM 10.57 6.78 6.30 1.72 Failed 16.0 0.80

EfficientNet 2.96 0.91 1.21 Failed 2.3 12.33 0.66

SwinTrans. 6.43 5.81 1.74 Failed 10.78 18.1 1.55

MMoE 0.29 0.034 0.070 Failed 0.049 0.088 0.014

DNN workload (Section 8.2 and 8.3), compare Souffle with
alternative schemes on selected workloads (Section 8.4), and
discuss the negligible compilation overhead introduced by
Souffle (Section 8.5).

8.1 Overall Performance

Table 3 gives the end-to-end execution time (in ms) of each
DNN model running on an A100 GPU. Note that some com-
pilers failed to compile and execute certain DNNs. Overall,
Souffle outperforms competing methods across all DNNs.
Souffle builds upon TVM’s Ansor, but it can significantly
boost the performance of the native TVM + Ansor implemen-
tation, giving an average speedup of 3.9× (up to 8.5×) over
Ansor. Furthermore, it improves NVIDIA-tuned TensorRT
by 3.7× on average (up to 7.9×), with a similar performance
improvement over Rammer, Apollo, and IREE. The results
demonstrate that Souffle delivers consistent and robust
performance improvement across DNN workloads.
Kernel or operator fusion techniques such as XLA, Ram-

mer, and Apollo can surpass Ansor in certain scenarios, high-
lighting the importance of kernel fusion. However, these
approaches can only merge a limited set of operators and
lack efficient instruction-level optimizations across some
operators, resulting in redundant computations.
Rammer relies on hand-crafted rules for operator fusion

and can only merge sibling operators in the computation
graph. It does not perform element-wise data dependence
analysis or reuse tensor buffers, limiting its ability to op-
timize operators with shared input-output buffers. Simi-
larly, XLA maps some computation-intensive operators (e.g.,
GEMM) to a BLAS library call and cannot merge such op-
erators with others. XLA relies on hand-crafted rules for
operator fusion and cannot optimize some computation pat-
terns, such as merging two consecutive reduction operators
in the BERT model.
Apollo also relies on loop fusion rules and can only

merge two reductions with the same tile size. Moreover, it
does not support schedules with global synchronization,
further restricting a scheduler’s optimization. IREE only
fuses producer-consumer types of fusions with parametric
tile-and-fuse optimizations. By contrast, the horizontal and
vertical transformations supported by Souffle are more
flexible and can fuse operator patterns unsupported by IREE.

Table 4. Execution time (𝑚𝑠) with Souffle individual opti-
mizations

Model V0 V1 V2 V3 V4

BERT 3.1 2.12 1.53 1.41 1.22
ResNeXt 29.0 5.90 4.43 4.43 4.43
LSTM 6.78 1.60 1.21 0.8 0.8
EfficientNet 4.2 0.91 0.72 0.63 0.63
Swin-Trans. 5.81 4.88 2.09 1.78 1.55
MMoE 0.05 0.019 0.016 0.014 0.014

Table 5. The number of GPU kernel calls and global memory
data transfer size (𝑀 bytes) of the resulting code.

of kernel calls Memory transfer size

Model TRT Apollo XLA Ours TRT Apollo Ours

BERT 120 240 216 24 361.8 880.5 226.8
ResNeXt 2406 1226 526 105 622.2 436.1 470.2
LSTM 662 Failed 3363 1 126.8 Failed 10.6
Efficient. 187 273 332 66 96.4 127.4 86.6
Swin-Tran. 716 1014 3188 53 831.5 1309.0 282.9
MMoE 20 10 7 1 0.061 0.063 0.058

As such, IREE cannot fuse computation-intensive operators
(e.g., batch_matmul) to reduce GPU global memory accesses.

Compared to other kernel fusion techniques, Souffle
can identify more data reuse opportunities by operating on
TEs, which have simple and well-defined semantics and do
not rely on inflexible fusion rules. Souffle can utilize data
reuse across operators with different-shaped buffers and
perform instruction-level optimizations for unfused opera-
tors. Souffle outperforms competing baselines due to these
advantages.

8.2 Performance Breakdown

We conducted a series of experiments to evaluate the per-
formance benefits of Souffle’s optimizations. We gradually
activated our optimizations, starting from the TVM + Ansor
generated code (V0) and then adding our TE horizontal trans.
(V1), TE vertical trans. (V2), global sync with global synchro-
nization API (V3), and subprogram-level optimization (V4),
as described in Sec. 6.1, 6.2, 6.4, and 6.5, respectively.

Table 4 reports the impact of individual optimizations on
inference time reduction for each DNN model. Our horizon-
tal and vertical TE transformation schemes benefit all DNN
workloads, increasing SIMD parallelism and reducing mem-
ory accesses. Transformer-based BERT and Swin-Trans. also
benefit from global sync and subprogram-level optimization,
which enable overlapping load and tensor core’s arithmetic
instructions and tensor buffer reuse.

8.3 Analysis of Performance Advantages

We identified two reasons for Souffle’s improved perfor-
mance over TensorRT and Apollo: reduced GPU kernel calls

Optimizing Deep Learning Inference via Global Analysis and Tensor Expressions Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA

(a) Unfused (b) Fused (c) Global-sync (d) Data-reuse

Figure 5. Example of fusion results for sub-module Efficient-
Net.

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 AVG
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee
du
p

unfused fused global-sync data-reuse

Figure 6. EfficientNet sub-module latency breakdown.

and reduced GPU memory data transfers. We use a micro-
benchmark taken from EfficientNet to illustrate the per-
formance contribution of the two optimizations. The sub-
module is the building block of EfficientNet and repeats many
times with different input sizes (marked with M0 to M9). The
pattern of this sub-module is common in many DNN models
and existing DNN frameworks fail to optimize it optimally.
Fig. 5 shows four versions: 5a unfused with generating each
TE to one kernel, 5b fused with Ansor’s fusion, 5c Souf-
fle’s global-sync with generating the whole sub-module to
one kernel but without any data reuse; 5d with Souffle’s
data reuse. Fig. 6 shows the normalized speedup of the four
versions with the horizontal axis being the different sub-
modules. Global sync can achieve 1.31× speedup on average
compared with Ansor’s unfused, with performance improve-
ments coming from kernel calls reduction and lightweight
CUDA grid sync. Enabling data reuse further improves the
speedup from 1.31× to 1.84× on average. Souffle’s reduced
GPU kernel calls and increased data reuse can both signifi-
cantly improve the performance. However, it’s non-trivial to
separate the performance contribution for end-to-end mod-
els, as TE transformation and global synchronization may
both reduce kernel calls and reduce memory access. We re-
port the reduced GPU kernel call and GPU memory data
transfers in the following.
Reduce GPU kernel call. GPU kernel calls can be expen-
sive, and it takes around 2 𝑢𝑠 to launch a kernel on an
NVIDIA A100 GPU. Table 5 compares the number of kernel
calls from TensorRT, Apollo, XLA and Souffle. Souffle
can create large subprograms that result in fewer kernels
because of resource-aware TE program partitioning. This
optimization reduces the kernel launch overhead. For ex-
ample, in BERT, Souffle reduces the number of kernels
from 120 and 240 (generated by TensorRT and Apollo, re-
spectively) to 24. Similar kernel call reductions are observed
in other DNN workloads. Operator fusion is one of the key

features of XLA. Nonetheless, XLA leverages libraries such
as cuBLAS to execute compute-intensive operators. Con-
sequently, it faces limitations in fusing compute-intensive
operators with memory-intensive counterparts, thereby hin-
dering the potential reduction in kernel count. For instance,
XLA generates 6 custom calls to invoke cuBLAS to run the
GEMM operators for one BERT layer. While Souffle seam-
lessly propagates the schedule of compute-intensive TEs to
memory-intensive TEs and generates one kernel.
Reduce GPU memory data transfers. GPU global mem-
ory data transfer is known to be expensive and it is desired to
reduce the amount of data transfers from the global memory.
To do so, Souffle maximizes tensor buffer reuse through
TE program partitioning (Sec. 5.4) and TE transformation
(Sec. 6). Table 5 also compares the amount of GPU global
memory data transfers measured by Nsight Compute for Ten-
sorRT, Apollo, and Souffle. Souffle-generated code incurs
significantly fewer data transfers compared to TensorRT and
Apollo. For example, in BERT, Souffle reduces the mem-
ory transaction from 361.8M and 880.5M bytes (loaded by
TensorRT and Apollo, respectively) to 226.8M bytes.

Consider the performance of TensorRT and Souffle again
when optimizing BERT. Like Sec. 2, we classify the com-
putation kernels in BERT into compute- (like GEMM) and
memory-intensive kernels (like softmax). We then measure
the execution latency (in clock cycles) of each kernel. Souf-
fle is more flexible in fusing operators, which reduces the
number of kernels and kernel invocation overhead compared
to TensorRT. For example, TensorRT maps a BERT layer to
10 kernels, while Souffle can partition one layer into two
kernels and perform instruction-level optimization. Souffle
reduces the memory-intensive kernel latency from 31.0 𝑢𝑠
(in TensorRT) to 25.5 𝑢𝑠 by buffering intermediate results in
fast memory and GPU registers for BERT one layer.
We also examine IREE’s fusion performance on BERT.

IREEmisses two optimization opportunities for BERT: it does
not fuse GEMM and softmax operators and several GEMM
operators. IREE launches 180 kernels and takes 2.22 ms for
execution. In comparison, Souffle launches 24 kernels and
takes 1.22 ms.

8.4 Case Study on LSTM

Following the discussion in Sec. 8.3, we conducted studies
on the LSTM model to reveal new optimization opportu-
nities offered by Souffle, which achieved a performance
improvement of 4.3× over TensorRT and 2.2× over Rammer.
We compared Souffle with Rammer, the most performant
baseline, as discussed in Sec. 8.3. Fig. 7 shows the fusion
strategy used by Rammer and Souffle for an LSTM with 10
cells (listed vertically in Fig. 7). Each cell has its dedicated
weight tensors (marked as𝑊 and 𝑈 in Fig. 7), hidden states
(ℎ) and output (𝑐). In each time step 𝑡 , the 𝑛-th cell performs
general matrix-vector multiplication (GEMV for short) using

Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA Chunwei Xia et al.

… …

…
 …

Time Steps

Cells

…
 …

… …

(a) Rammer

GEMVGEMV
Atomic
Add
Atomic
Add

Global
Sync

Tensor
Data
Tensor
Data

Computation
Kernel
Computation
Kernel

Reduction Operator
(e.g., reduce_sum)
Reduction Operator
(e.g., reduce_sum)

t=0 t=1 t=99

n=0

n=1

n=9

LSTM
Cell
LSTM
Cell

c

h

W + U

… …

…
 …

Time Steps

Cells

…
 …

… …

(b) SOUFFLE

t=0 t=1 t=99

n=0

n=1

n=9

c

h

W + U

Figure 7. How Rammer (a) and Souffle (b) map a LSTM
graph into computation kernels.

Table 6. GPU performance counter values for LSTM opti-
mized by Rammer and Souffle.

Metrics Rammer Souffle

GPU global memory trans. (in bytes) 1911.0MB 21.11MB
Pipeline Utilization (LSU) 20.2% 35.4%
Pipeline Utilization (FMA) 8.0% 19.0%

its weight tensors (𝑊𝑛 and 𝑈𝑛), hidden state (ℎ𝑛) and out-
put (𝑐𝑛−1) from (𝑛 − 1)-th cell, updates its hidden state (ℎ𝑛)
and generates output (𝑐𝑛) for the current time step. Fig. 7
shows the fully unrolled time step loop. The LSTM opera-
tors alongside the diagonal line are independent, i.e. no data
dependency exists. Both Souffle and Rammer exploit such
optimization opportunity, i.e. the wavefront parallelism, and
fuse the GEMV computation to different blocks of a kernel.

With the TE-based global analysis, Souffle discovers that
the weight tensors (𝑊 and𝑈) of each LSTM cell are reused
across all time steps (temporal reuse). It utilizes the global
synchronization and generates one kernel for the entire
model, as shown in the right part of Fig. 7. On the other
hand, the Rammer version needs to load the weight tensors
in every wavefront, resulting in a longer execution time com-
pared to Souffle. We measured GPU global memory data
transfer and pipeline utilization for the optimized LSTM.
As Table 6 show, Souffle-optimized code reduces memory
loads by orders of magnitude compared to Rammer’s version
(21𝑀𝐵 vs 1911𝑀𝐵) and increases pipeline utilization for both
the load store unit (LSU) and fused multiply-add unit (FMA).

8.5 Compilation Overhead

Souffle employs Ansor and TVM for schedule search and
generation. The compilation overhead of Souffle + Ansor
is mainly from the time required for searching the program
schedule using native Ansor implementation. The additional
overhead introduced by Souffle involves two-level depen-
dence analysis, model splitting, schedule tuning, and global
optimization. Our measurements on six evaluated models

indicate that Souffle adds up to 63𝑠 overhead on top of
Ansor, which is negligible compared to the hours Ansor re-
quires for schedule search. This overhead can be reduced by
using faster optimizer like Roller [60], which is orthogonal
of Souffle.

9 Discussion

Expression power of TE. Souffle relies on the expres-
sion power of tensor expressions, which currently does not
support all DNN operators, e.g., it does not support resize.
Souffle maps these TE-unsupported operators to a com-
putation kernel and uses the back-end operator library im-
plementation but without fusing them with other operators.
Given the active developer community of TVM, we expect
this limitation to be addressed by future TVM releases.
Cost model for TE program partitioning. Souffle ex-
tracts tensor information by compiling the raw TE program.
This can be improved by building a cost model [53] to esti-
mate occupancy from the TE program.
Reusing dynamic-shaped tensors. Certain DNN oper-
ators have unknown tensor shapes at compile time. Our
current implementation does not support reusing tensors of
dynamic shapes. To address this, we can generate multiple
versions of a kernel and choose the appropriate one based
on shape information available at execution time.
Fusion in DL training. DL compilers like TensorFlow XLA
also enable operator fusion in training (forward inference
and backward parameter updates). Our TE-based transfor-
mation can be integrated into DL compilers to accelerate
forward and backward passes during training. However,
intermediate tensors must be kept in global memory in
DL training for backward gradient-based optimization like
Adam [24], restricting operator fusion chances. Our main
focus is optimizing model inference after DNN training. Sup-
port for TE transformation in DL training is left for future
work.
Slowdown. Performance slowdown can occur when Souf-
fle extends the schedule from compute-intensive TEs to
memory-intensive reduction TEs (discussed in Sec. 6.3). This
introduces synchronization between blocks, potentially ham-
pering parallelism for reduction TEs. A potential remedy is
to create a cost model to decide whether fusing these TEs is
beneficial.

10 Related work

Loop and kernel fusion. Loop fusion is commonly used
to improve the performance of CPU programs [3, 8, 9, 23].
Recent research has also utilized kernel fusion to optimize
GPU programs by reducing data traffic to/from off-chip
memory[42, 50]. Various domain-specific kernel fusion poli-
cies have been proposed for workloads like data center ap-
plications [54], mesh computing [6], machine learning work-
loads [4] and image processing [35]. Souffle leverages loop

Optimizing Deep Learning Inference via Global Analysis and Tensor Expressions Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA

fusion to optimize DNN inference through compiler trans-
formations, building on these previous research efforts.
Operator fusion in DNN compilers. Operator fusions
can enhance performance by improving data reuse and re-
ducing on-chip data traffic. To seek out fusion opportuni-
ties, DNNFusion classifies operators and defines rules based
on their classification [37]. Astitch [58] and Rammer [33]
fuse independent operators to leverage inter-operator paral-
lelism, while Deepcuts [22] uses rules to fuse kernels based
on GPU hardware parameters. Apollo [56] adopts a partition-
based approach to search for fusion opportunities within
sub-graphs. However, these approaches rely on hand-crafted
rules with extensive engineering efforts and may miss op-
timization opportunities, as discussed in Sec. 2. Jeong et
al [19] proposed a dynamic programming algorithm to decide
whether to pin or fuse an activation map on DNN accelera-
tors with a global buffer. DNNFusion [37] classifies operators
based on the element-wise mappings from input to output,
but it can not fuse many-to-many with many-to-many oper-
ators (like GEMM and Softmax), while Souffle can further
reduce the overhead of kernel launch. Furthermore, DNNFu-
sion lacks global analysis of tensor reuse opportunities and
may miss the temporal and spatial data reuse opportunities,
which are critical to improve the performance as shown in
Sec 8.2. Souffle improves upon previous operator fusion
techniques by utilizing control and data-flow analysis on
the tensor dependency graph to partition TEs into subpro-
grams. TEs have clear and simple relations, and they can
be combined to represent numerous DNN operators. Souf-
fle leverages the well-defined semantics in TEs to perform
precise data dependence analysis for instruction scheduling
and data reuse optimization. Additionally, Souffle applies
semantic preserving transformations to refine TEs. Its op-
timization capabilities have better generalization ability as
TEs can be combined to represent more complex operators.
Global analysis and fusion optimization. TensorFlow
XLA [27] and MLIR [43] also conduct global analysis on the
input program graph. XLA utilizes profitability analysis on
its high-level operations intermediate representation before
deciding on tiling and fusion. However, XLA relies on hand-
crafted heuristics to fuse operators, which can be challenging
for high-level operators. For instance, XLA’s fusion heuris-
tic cannot fuse two consecutive reduction operators in the
BERTmodel. Moreover, as XLA operates at the operator level
and some operators are mapped to low-level library calls, it
cannot optimize across libraries. In contrast, Souffle takes
a different approach by lowering high-level operators into
lower-level tensor expressions (TEs), which have concise se-
mantics. Operating on TEs rather than assuming high-level
operators enables Souffle to optimize flexibly across opera-
tor boundaries. Unlike XLA, Souffle can merge GEMM and
Softmax operators and optimize across reduction operators.

The MLIR -affine-loop-fusion pass utilizes a slicing-based
method to identify producer-consumer and sibling fusion op-
portunities. Souffle implements a lightweight, specialized
global analysis on TEs, which can be easily integrated into
DNN inference engines. Moreover, Souffle offers more op-
timization opportunities than just fusion. For example, it en-
ables joint optimizations across multiple compute-intensive
TEs in a TE subprogram and facilitates horizontal and verti-
cal transformations for sibling fusion.
Optimizing individual operators. Numerous compiler-
based approaches exist to optimize individual operators,
including TVM [12, 51], XLA [27], Tiramisu [5], and
TACO [25]. These compilers often represent operators in
high-level forms such as TEs or linear algebra, enabling
aggressive optimization without complex analysis through
domain-specific knowledge. Souffle is orthogonal to these
techniques.

11 Conclusion

We have presented Souffle, a top-down compiler-based
approach for improving DNN inference. Souffle identifies
optimization opportunities across DNN operators by per-
forming data-flow analysis on the entire tensor dependence
graph built from tensor expressions. It groups tensor ex-
pressions into subprograms and performs local optimization
through semantics-preserving transformations, instruction
scheduling, and tensor buffer reuse. We evaluated Souffle
on six DNN models using an NVIDIA A100 GPU and com-
pared it to six state-of-the-art DNN optimizing frameworks.
Souffle outperformed them with a speedup of up to 7.9×
over TensorRT.

Acknowledgments

We thank our shepherd, Vinod Grover, and the anonymous
reviewers for their constructive feedback. This work was
supported in part by the National Key R&D Program of
China under grant agreement 2021ZD0110101, the National
Natural Science Foundation of China (NSFC) under grant
agreements T2222026, 22003073, 62232015, and 62090024,
the Innovation Funding of ICT CAS under grant agreement
E361010, a Beijing Nova Program, and the UK Engineering
and Physical Sciences Research Council (EPSRC) under grant
agreement EP/X018202/1. For the purpose of open access,
the authors have applied a Creative Commons Attribution
(CCBY) license to any Author Accepted Manuscript version
arising from this submission.

References

[1] [n. d.]. IREE: Intermediate Representation Execution Environment.
https://github.com/iree-org/iree.

[2] Martín Abadi, Paul Barham, Jianmin Chen, et al. 2016. TensorFlow: A
System for Large-Scale Machine Learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). USENIX

https://github.com/iree-org/iree

Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA Chunwei Xia et al.

Association, 265–283. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/abadi

[3] Aravind Acharya, Uday Bondhugula, and Albert Cohen. 2018. Poly-
hedral auto-transformation with no integer linear programming. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 529–542.

[4] Arash Ashari, Shirish Tatikonda, Matthias Boehm, Berthold Reinwald,
Keith Campbell, John Keenleyside, and P Sadayappan. 2015. On opti-
mizing machine learning workloads via kernel fusion. ACM SIGPLAN
Notices 50, 8 (2015), 173–182.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del
Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib
Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhedral Com-
piler for Expressing Fast and Portable Code. In 2019 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO).
193–205. https://doi.org/10.1109/CGO.2019.8661197

[6] Carlo Bertolli, Adam Betts, Paul HJ Kelly, Gihan R Mudalige, and
Mike B Giles. 2012. Mesh independent loop fusion for unstructured
mesh applications. In Proceedings of the 9th conference on Computing
Frontiers. 43–52.

[7] U. Bondhugula, A. Acharya, and A Cohen. 2016. The Pluto+ Algorithm:
A Practical Approach for Parallelization and Locality Optimization of
Affine Loop Nests. In ACM Transactions on Programming Languages
and Systems.

[8] Uday Bondhugula, Oktay Gunluk, Sanjeeb Dash, and Lakshmi-
narayanan Renganarayanan. 2010. Amodel for fusion and codemotion
in an automatic parallelizing compiler. In Proceedings of the 19th inter-
national conference on Parallel architectures and compilation techniques.
343–352.

[9] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and
Ponnuswamy Sadayappan. 2008. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. 101–113.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, et al. 2020. Language models are few-shot learners. Advances
in neural information processing systems 33 (2020), 1877–1901.

[11] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and
Thomas Blaschke. 2018. The rise of deep learning in drug discovery.
Drug Discovery Today 23, 6 (2018), 1241–1250. https://doi.org/10.1016/
j.drudis.2018.01.039

[12] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Ed-
die Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM:
An Automated End-to-End Optimizing Compiler for Deep Learn-
ing. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, 578–594. https:
//www.usenix.org/conference/osdi18/presentation/chen

[13] ONNX Runtime developers. 2021. ONNX Runtime. https://
onnxruntime.ai/. Version: x.y.z.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[15] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Rui-
hang Lai, Zihao Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, and
Tianqi Chen. 2023. TensorIR: An Abstraction for Automatic Ten-
sorized Program Optimization. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2023, Tor M. Aamodt, Na-
talie D. Enright Jerger, and Michael M. Swift (Eds.). ACM, 804–817.
https://doi.org/10.1145/3575693.3576933

[16] Tianfan Fu, Cao Xiao, Cheng Qian, Lucas M. Glass, and Jimeng Sun.
2021. Probabilistic and Dynamic Molecule-Disease Interaction Mod-
eling for Drug Discovery. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining (Virtual Event,
Singapore). 404–414. https://doi.org/10.1145/3447548.3467286

[17] Kim Hazelwood, Sarah Bird, et al. 2018. Applied Machine Learning
at Facebook: A Datacenter Infrastructure Perspective. In 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). 620–629. https://doi.org/10.1109/HPCA.2018.00059

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term
Memory. Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/
10.1162/neco.1997.9.8.1735

[19] Hyuk-Jin Jeong, JiHwan Yeo, Cheongyo Bahk, and JongHyun Park.
2023. Pin or Fuse? Exploiting Scratchpad Memory to Reduce Off-Chip
Data Transfer in DNNAccelerators. In Proceedings of the 21st ACM/IEEE
International Symposium on Code Generation and Optimization (CGO
2023). Association for Computing Machinery, 224–235. https://doi.
org/10.1145/3579990.3580017

[20] Zhihao Jia, Oded Padon, et al. 2019. TASO: Optimizing Deep Learning
Computation with Automatic Generation of Graph Substitutions. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). 47–62. https://doi.org/10.
1145/3341301.3359630

[21] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, et al.
2017. In-Datacenter Performance Analysis of a Tensor Processing Unit.
In Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17). 1–12. https://doi.org/10.1145/3079856.3080246

[22] Wookeun Jung, Thanh Tuan Dao, and Jaejin Lee. 2021. DeepCuts: a
deep learning optimization framework for versatile GPU workloads.
In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 190–205.

[23] Ken Kennedy and Kathryn S McKinley. 1993. Maximizing loop par-
allelism and improving data locality via loop fusion and distribution.
In International Workshop on Languages and Compilers for Parallel
Computing. Springer, 301–320.

[24] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for
Stochastic Optimization. In 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1412.6980

[25] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and
Saman Amarasinghe. 2017. Taco: A tool to generate tensor algebra
kernels. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 943–948.

[26] Anna Larionova, Polina Kazakova, and Nikita Nikitinsky. 2019. Deep
Structured Semantic Model for Recommendations in E-commerce. In
Hybrid Artificial Intelligent Systems - 14th International Conference,
HAIS 2019, León, Spain, September 4-6, 2019, Proceedings (Lecture Notes
in Computer Science, Vol. 11734). Springer, 85–96. https://doi.org/10.
1007/978-3-030-29859-3_8

[27] Chris Leary and Todd Wang. 2017. XLA: TensorFlow, compiled. Tesor-
Flow Dev Summit.

[28] Shih-Chieh Lin, Yunqi Zhang, et al. 2018. The Architectural Implica-
tions of Autonomous Driving: Constraints and Acceleration. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2018. ACM, 751–766. https://doi.org/10.1145/3173162.3173191

[29] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua,
Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy.
2018. Progressive Neural Architecture Search. In Computer Vision –
ECCV 2018. Springer International Publishing, 19–35.

[30] Hsin-I Cindy Liu, Marius Brehler, Mahesh Ravishankar, Nicolas Vasi-
lache, Ben Vanik, and Stella Laurenzo. 2022. TinyIREE: An ML Ex-
ecution Environment for Embedded Systems From Compilation to

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.01.039
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://onnxruntime.ai/
https://onnxruntime.ai/
https://doi.org/10.1145/3575693.3576933
https://doi.org/10.1145/3447548.3467286
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3579990.3580017
https://doi.org/10.1145/3579990.3580017
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3341301.3359630
https://doi.org/10.1145/3079856.3080246
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-29859-3_8
https://doi.org/10.1007/978-3-030-29859-3_8
https://doi.org/10.1145/3173162.3173191

Optimizing Deep Learning Inference via Global Analysis and Tensor Expressions Conference ASPLOS ’24, April 27 - May 1, 2024, CA, USA

Deployment. IEEE Micro 42, 5 (sep 2022), 9–16. https://doi.org/10.
1109/MM.2022.3178068

[31] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. 2021. Swin Transformer: Hierarchical
Vision Transformer using Shifted Windows. CoRR abs/2103.14030
(2021). arXiv:2103.14030 https://arxiv.org/abs/2103.14030

[32] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H.
Chi. 2018. Modeling Task Relationships in Multi-Task Learning with
Multi-GateMixture-of-Experts. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining
(KDD ’18). 1930–1939. https://doi.org/10.1145/3219819.3220007

[33] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. [n. d.].
Rammer: Enabling Holistic Deep Learning Compiler Optimizations
with rTasks. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 881–897. https:
//www.usenix.org/conference/osdi20/presentation/ma

[34] Microsoft. 2022. Antares. https://github.com/microsoft/antares/tree/
latest.

[35] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-
Kelley, and Kayvon Fatahalian. 2016. Automatically Scheduling Halide
Image Processing Pipelines. ACM Trans. Graph. 35, 4, Article 83 (jul
2016), 11 pages. https://doi.org/10.1145/2897824.2925952

[36] Multi-Level IR Compiler Framework committee. 2022. ’affine’ Dialect.
[37] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren.

2021. DNNFusion: Accelerating Deep Neural Networks Execution
with Advanced Operator Fusion. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Language Design and
Implementation (PLDI 2021). 883–898. https://doi.org/10.1145/3453483.
3454083

[38] NVIDIA Corporation. 2021. TensorRT. https://developer.nvidia.com/
tensorrt.

[39] NVIDIA Corporation. 2022. NVIDIA Nsight Compute.
[40] NVIDIA Corporation. 2023. CUDA Grid Synchronization.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#grid-
synchronization.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, et al. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary. CoRR abs/1912.01703 (2019). arXiv:1912.01703 http://arxiv.org/
abs/1912.01703

[42] Bo Qiao, Oliver Reiche, Frank Hannig, and Jïrgen Teich. 2019. From
loop fusion to kernel fusion: A domain-specific approach to locality
optimization. In 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, 242–253.

[43] Tatiana Shpeisman and Chris Lattner. 2019. Mlir: Multi-level interme-
diate representation for compiler infrastructure.

[44] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. [n. d.]. Sequence to
Sequence Learning with Neural Networks. In Proceedings of the 27th
International Conference on Neural Information Processing Systems -
Volume 2 (Montreal, Canada) (NIPS’14). MIT Press, 3104–3112.

[45] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A.
Alemi. 2017. Inception-v4, Inception-ResNet and the Impact of Resid-
ual Connections on Learning. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence. 4278–4284.

[46] Sanket Tavarageri, Alexander Heinecke, Sasikanth Avancha, Bharat
Kaul, Gagandeep Goyal, and Ramakrishna Upadrasta. 2021. PolyDL:
Polyhedral Optimizations for Creation of High-performance DL Prim-
itives. ACM Trans. Archit. Code Optim. 18, 1 (2021), 11:1–11:27.
https://doi.org/10.1145/3433103

[47] Tianqi Chen. 2022. Working with Operators Using Tensor Expression.
https://tvm.apache.org/docs/tutorial/tensor_expr_get_started.html.

[48] Nicolas Vasilache, Oleksandr Zinenko, et al. 2018. Tensor Compre-
hensions: Framework-Agnostic High-Performance Machine Learn-
ing Abstractions. CoRR abs/1802.04730 (2018). arXiv:1802.04730

http://arxiv.org/abs/1802.04730
[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention Is All You Need. CoRR abs/1706.03762 (2017). arXiv:1706.03762
http://arxiv.org/abs/1706.03762

[50] Mohamed Wahib and Naoya Maruyama. 2014. Scalable kernel fusion
for memory-bound GPU applications. In SC’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 191–202.

[51] Huanting Wang, Zhanyong Tang, et al. 2022. Automating Rein-
forcement Learning Architecture Design for Code Optimization. In
Proceedings of the 31st ACM SIGPLAN International Conference on
Compiler Construction (Seoul, South Korea) (CC 2022). Association
for Computing Machinery, New York, NY, USA, 129–143. https:
//doi.org/10.1145/3497776.3517769

[52] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, and Gennady
Pekhimenko. 2021. Horizontally Fused Training Array: An Ef-
fective Hardware Utilization Squeezer for Training Novel Deep
Learning Models. In Proceedings of Machine Learning and Systems
2021. mlsys.org. https://proceedings.mlsys.org/paper/2021/hash/
a97da629b098b75c294dffdc3e463904-Abstract.html

[53] ZhengWang and Michael O’Boyle. 2018. Machine learning in compiler
optimization. Proc. IEEE 106, 11 (2018), 1879–1901.

[54] Haicheng Wu, Gregory Diamos, Jin Wang, Srihari Cadambi, Sudhakar
Yalamanchili, and Srimat Chakradhar. 2012. Optimizing data ware-
housing applications for GPUs using kernel fusion/fission. In 2012
IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum. IEEE, 2433–2442.

[55] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
2017. Aggregated Residual Transformations for Deep Neural Networks.
In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 5987–5995. https://doi.org/10.1109/CVPR.2017.634

[56] Jie Zhao, Xiong Gao, et al. 2022. Apollo: Automatic Partition-based
Operator Fusion through Layer by Layer Optimization. In Proceedings
of Machine Learning and Systems 2022. https://proceedings.mlsys.org/
paper/2022/hash/069059b7ef840f0c74a814ec9237b6ec-Abstract.html

[57] Lianmin Zheng, Chengfan Jia, et al. [n. d.]. Ansor: Generating High-
Performance Tensor Programs for Deep Learning. In 14th USENIX
Symposium onOperating SystemsDesign and Implementation, 2020. 863–
879. https://www.usenix.org/conference/osdi20/presentation/zheng

[58] Zhen Zheng, Xuanda Yang, et al. 2022. AStitch: enabling a new multi-
dimensional optimization space for memory-intensive ML training
and inference on modern SIMT architectures. In Proceedings of the
27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. 359–373.

[59] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou,
Xiaoqiang Zhu, and Kun Gai. 2018. Deep Interest Evolution Network
for Click-Through Rate Prediction. https://doi.org/10.48550/ARXIV.
1809.03672

[60] Hongyu Zhu, Ruofan Wu, et al. 2022. ROLLER: Fast and Efficient
Tensor Compilation for Deep Learning. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22). USENIX
Association, 233–248. https://www.usenix.org/conference/osdi22/
presentation/zhu

https://doi.org/10.1109/MM.2022.3178068
https://doi.org/10.1109/MM.2022.3178068
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://doi.org/10.1145/3219819.3220007
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.usenix.org/conference/osdi20/presentation/ma
https://github.com/microsoft/antares/tree/latest
https://github.com/microsoft/antares/tree/latest
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/3453483.3454083
https://doi.org/10.1145/3453483.3454083
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/cuda/cuda-c-programming-guide/##grid-synchronization
https://docs.nvidia.com/cuda/cuda-c-programming-guide/##grid-synchronization
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1145/3433103
https://tvm.apache.org/docs/tutorial/tensor_expr_get_started.html
https://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1802.04730
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3497776.3517769
https://doi.org/10.1145/3497776.3517769
https://proceedings.mlsys.org/paper/2021/hash/a97da629b098b75c294dffdc3e463904-Abstract.html
https://proceedings.mlsys.org/paper/2021/hash/a97da629b098b75c294dffdc3e463904-Abstract.html
https://doi.org/10.1109/CVPR.2017.634
https://proceedings.mlsys.org/paper/2022/hash/069059b7ef840f0c74a814ec9237b6ec-Abstract.html
https://proceedings.mlsys.org/paper/2022/hash/069059b7ef840f0c74a814ec9237b6ec-Abstract.html
https://www.usenix.org/conference/osdi20/presentation/zheng
https://doi.org/10.48550/ARXIV.1809.03672
https://doi.org/10.48550/ARXIV.1809.03672
https://www.usenix.org/conference/osdi22/presentation/zhu
https://www.usenix.org/conference/osdi22/presentation/zhu

	Abstract
	1 Introduction
	2 Motivation
	2.1 Working Example
	2.2 Performance Evaluation
	2.3 Missed Opportunities
	2.4 Our Insights

	3 Preliminaries
	4 Overview of Souffle
	5 Global Computation Graph Analysis
	5.1 Identifying data reuse opportunities
	5.2 Intra-TE element-wise dependency analysis
	5.3 TE characterization
	5.4 TE Program Partitioning

	6 Semantic-preserving TE Transformations
	6.1 Horizontal transformation for independent TEs
	6.2 Vertical transformation for one-relies-on-one TEs
	6.3 Schedule TEs
	6.4 Merging TEs Schedule
	6.5 Optimizations within a Subprogram
	6.6 Put it all together
	6.7 Implementation Details

	7 Experimental Setup
	7.1 Evaluation Platform and Workloads
	7.2 Competing Baselines
	7.3 Performance Report

	8 Experimental Results
	8.1 Overall Performance
	8.2 Performance Breakdown
	8.3 Analysis of Performance Advantages
	8.4 Case Study on LSTM
	8.5 Compilation Overhead

	9 Discussion
	10 Related work
	11 Conclusion
	Acknowledgments
	References

