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Abstract    Due to the unprecedented development of low-latency interconnect technology, building large-scale disaggre-

gated architecture is drawing more and more attention from both industry and academia. Resource disaggregation is a new

way to organize the hardware resources of  datacenters,  and has the potential  to overcome the limitations,  e.g.,  low re-

source utilization and low reliability, of conventional datacenters. However, the emerging disaggregated architecture brings

severe performance and latency problems to the existing cloud systems. In this paper, we take memory disaggregation as

an example to demonstrate the unique challenges that the disaggregated datacenter poses to the existing cloud software

stacks, e.g., programming interface, language runtime, and operating system, and further discuss the possible ways to rein-

vent the cloud systems.
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1    Introduction

The urgent demand of cloud providers to improve

the  reliability,  availability,  and  serviceability  (RAS)

of datacenters promotes the rapid development of re-

source  disaggregation  technologies  in  the  fields  of

hardware, systems, and applications[1–3]. In a disaggre-

gated  datacenter,  hardware  resources  (e.g.,  CPU,

memory, storage, and accelerators) are grouped as re-

source pools by connecting the individual servers over

emerging I/O interconnects[1], as Fig.1 shows. On the

one  hand,  from  the  perspective  of  an  application,  it

can  acquire  resources  from  the  large-scale  cluster

without  considering  the  limitations  of  an  individual

server,  increasing  the  amount  of  CPU  and  memory

that can be accessed by orders of magnitude. On the

other  hand,  from  the  perspective  of  the  cluster,  a

server with any type of available resources can be uti-

lized by the application without considering the avail-

ability of other types of resources, which significantly

improves  the  resource  utilization  of  the  datacenter.

Due  to  the  potentially  huge  benefits,  both  industry

and academia devote much research to resource disag-

gregation. Due to the requirements of ultra-low com-

munication  latency,  the  CPU  and  memory  resources
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Fig.1.  Overview of a disaggregated datacenter. All the servers
are connected by the fast I/O interconnects and reorganized as
different types of resource pools.
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are tightly coupled until recently. Hence, existing sys-

tems  are  all  designed  for  conventional  monolithic

servers.  As  a  result,  the  disaggregated  architecture

brings  several  severe  challenges  to  the  existing  cloud

software  stacks  due  to  its  three  characteristics—mi-

crosecond-scale latency, asymmetric performance, and

costly synchronization. When running on disaggregat-

ed  servers,  applications  can  slow down 2x  with  400x

longer tail latency[4, 5].

New Challenges from Emerging I/O Interconnects.
To keep pace with the scale of cloud applications, the

I/O  interconnect  is  progressing  at  an  unprecedented

speed  to  provide  extremely  high  bandwidth  and  low

latency.  Recently,  the  I/O  latency  has  been  reduced

to  a  microsecond-scale,  the  bandwidth  can  reach  up

to  dozens  of  gigabytes  per  second[6],  and  the  perfor-

mance starts being comparable with the on-die inter-

connect.  The  fast  network  allows  the  decoupling  of

the tightly coupled CPU and memory resources. How-

ever,  on the one hand,  as  Barroso et  al.  discussed in

[7],  such  a  new  breed  of  microsecond-scale  I/O  de-

vices  brings  various  challenges  to  the  existing  cloud

systems,  which  were  originally  designed  to  mitigate

millisecond-scale  events.  As  a  result,  the  mismatch

between the system design and the disaggregated ar-

chitecture  leads  to  significant  performance  overhead,

and more details will be discussed in Subsection 3.1.

On  the  other  hand,  there  is  still  a  performance

gap  when  comparing  the  I/O  interconnects  with  the

on-die  interconnect,  e.g.,  the  peer-to-peer  latency  of

Ultra  Path  Interconnect  (UPI)① is  only  40  ns,  more

than  10x  shorter  than  using  the  most  advanced  I/O

interconnects,  InfiniBand[8, 9].  Hence,  when  applica-

tions run on a disaggregated datacenter connected by

such  emerging  I/O  interconnects,  the  hardware  re-

sources  are  heterogeneous  with  asymmetric  perfor-

mance.  However,  the  conventional  cloud  software

stacks,  including  data  structure,  language  runtime,

and  operating  system,  are  not  aware  of  such  a  huge

performance  gap,  leading  to  unexpected  performance

degradation and variation (Subsection 3.2).

At the same time, due to a lack of hardware sup-

port for cache coherency, inter-server synchronization

(via  I/O  interconnects)  is  much  slower  than  intra-

server  synchronization.  For  example,  the  atomic  in-

structions,  e.g.,  compare-and-exchange  (CMPXCHG)

and fetch-and-add (FAA), provided by the x86 CPU

can  finish  around  6  nanoseconds–150  nanoseconds

within  a  monolithic  server[10].  But  the  synchroniza-

tion between two disaggregated servers (connected by

InfiniBand) can reach up to 4 microseconds by using

a  sequence  of  instructions[4],  which  is  more  than  20x

slower. As a result, in order to get reasonable perfor-

mance,  the  programmers  have  to  partition  the  data

carefully to limit the overhead of inter-server synchro-

nization.  The  broader  impacts  of  the  costly  synchro-

nization will be further discussed in Subsection 3.3.

Semantics-Aware  System  for  Disaggregation.  The

existing  cloud  system  is  built  for  monolithic  servers

under  general-purpose  design  principles.  The  whole

software stack, ranging from data structures, runtime

to  the  operating  system,  is  oblivious  to  the  diversity

of cloud applications and the characteristics of disag-

gregated architectures.  As  a  result,  the  cloud system

leads  to  a  semantics  gap  between  high-level  applica-

tions and low-level hardware. There are two main rea-

sons for this problem.

On  the  one  hand,  high-level  programming  lan-

guages (HHL) are widely used in the development of

cloud  applications,  e.g.,  Hadoop,  Spark,  Cassandra,

and Flink. The high-level languages provide a variety

of runtime supports to make programming easier, let-

ting the programmer focus on designing the program

logic instead of elaborating on resource management.

For example, most of the popular managed languages,

e.g.,  Java,  Python,  and  Scala,  provide  the  data  ab-

stract of Object to enable an object-oriented program-

ming model and automatically reclaim the dead space

via  the  Garbage  Collection  (GC)  mechanism  to  ease

memory  management  and  improve  memory  safety.

However,  applications  need  to  pay  performance  tax

for  these  runtime  supports,  and  the  program seman-

tics  are  usually  hidden from underlying systems.  For

example,  the  GC mechanism can lead to  a  3x  larger

memory  footprint[3].  As  a  result,  when  running  on

memory  disaggregated  servers,  such  cloud  applica-

tions with large working sets  tend to cause excessive

accesses to the remote memory, degrading the perfor-

mance significantly[3, 4, 9, 11, 12].

On the other hand, the operating system is an ill

fit for managing disaggregated resources over the net-

work.  First,  OS  (operating  system)  components  as-

sume resources are local and communicate via shared

memory or fast IPCs, regardless of kernel types. This

mode,  however,  is  infeasible  over  a  slower  network.

Second,  a  traditional  OS  fate-shares  with  its  hard-

950 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

 

①Interconnect that moves data faster and smarter. https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/in-
terconnect.html, Sept. 2023.

https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html


ware. But in a disaggregated setting, failure is expect-

ed to be common. The OS must ensure a more flexi-

ble failure model.  Finally, many OS mechanisms and

policies are designed for slow devices, and one promi-

nent  example  is  that  OS's  decade-old  paging  subsys-

tem  is  tailored  for  millisecond-scale  disks.  However,

these  mechanisms  work  poorly  for  microsecond  de-

vices such as RDMA.

We  will  discuss  the  new  challenges  in Section 3,

and  existing  solutions  in Section 4.  Finally,  we  will

discuss the potential research trends of disaggregated

cloud  systems  in Section 5.  To  conclude,  it  is  neces-

sary  to  reinvent  the  cloud  software  stack  to  bridge

the semantics-gap between cloud applications and dis-

aggregated architectures. 

2    Rise of Resource Disaggregation

In order to meet the ever-increasing parallelism of

cloud applications,  cloud providers  proposed to build

the  warehouse-scale  datacenter.  At  the  same  time,

system developers build a series of distributed frame-

works, e.g., MapReduce[13],  to achieve very high scal-

ing-out  parallelism on the  large-scale  cluster.  On the

other  hand,  a  new  concept  of  datacenter,  i.e.,  the

computational  Grid,  is  proposed  to  enable  applica-

tions to scale up across multiple servers. The benefits

are twofold:  1) the application can dynamically scale

and acquire heterogeneous resources without consider-

ing  the  limitations  of  a  single  machine;  2)  cloud

providers can build dedicated resource nodes (servers)

to reduce the complexity and cost of hardware. 

2.1    Computational Grid

The  computational  Grid  is  a  distributed  frame-

work  proposed  in  the  mid-1990s,  developed  for  re-

source sharing during scientific  collaborations[14].  The

servers  and  scientific  instruments  are  connected  by

networks,  and  all  the  hardware  resources  are  orga-

nized  as  different  kinds  of  resource  pools,  e.g.,  com-

puting  pool,  memory  pool,  and  storage  pool.  An  ap-

plication can be divided into a bunch of subtasks and

scheduled  to  the  appropriate  servers.  Different  kinds

of  subtasks  benefit  from  either  the  large-scale  re-

source  or  the  heterogeneous  hardware,  e.g.,  accelera-

tors. Right now, the Grid② is still widely deployed in

different  areas,  e.g.,  financial  service,  entertainment,

and engineering.

Based on the computational Grid, Fan et al. pro-

posed a reconfigurable architecture, DSAG (Dynamic

Self-Organized Computer Architecture Based on Grid-

components)[15, 16] in  the  early  2000s  to  fulfill  the

large-scale  resource requirements of  high-performance

computing. The key idea is to disaggregate the hard-

ware  resources  from  an  integrated  monolithic  server

and organize the same type of hardware resources in-

to  a  physical  resource  cluster  (pool),  as Fig.2 shows.

When deploying an application, the underlying archi-

tecture will  be dynamically reconfigured according to

the  program's  characteristics.  DSAG  brings  a  new

trend  to  building  large-scale  datacenters.  First,  the

manufacturer  can  build  dedicated  architectures  and

systems for each kind of resource clusters to achieve a

larger  scale  and  higher  management  efficiency.  For
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example,  the  memory  cluster  is  equipped  with  dedi-

cated CPUs with fewer computing units and a larger

memory  management  unit  to  break  the  Memory

Wall[17]. Second, DSAG can provide specialized archi-

tectures  for  diverse  applications  with  fine-grained re-

source provision via the ability of architecture recon-

figuration.  In  addition,  DSAG  provides  an  exclusive

and isolated hardware execution environment for  ap-

plications to avoid the resource racing and conflicts of

the legacy multi-tenant usage scenarios. DSAG estab-

lishes the trend of hardware resource disaggregation. 

2.2    Resource Disaggregation

Fig.3 demonstrates the bandwidth development of

different  types  of  interconnects.  With  the  unprece-

dented  development  of  network  technologies,  the  la-

tency  and  bandwidth  of  I/O  interconnects  are  nar-

rowing the performance gap with the on-die intercon-

nect.  As a result,  the emerging I/O interconnects al-

low  us  to  disaggregate  the  tightly  coupled  CPU and

memory  resources  and  build  the  general-purpose  dis-

aggregated  datacenter  to  support  ubiquitous  cloud

computing workloads[1]. For example, the industry has

built several prototypes, such as HP's The Machine③,

Intel’s  Rack-Scale  Design④ and  the  Firebox[18] from

Berkeley. However, in order to make the disaggregat-

ed server more practical, some requirements should be

satisfied, from hardware features to the programming

model and OS design. 

2.2.1    Architecture Features

Hardware  components  are  reorganized  and  virtu-

alized  as  resource  pools.  The  disaggregated  datacen-

ter  is  built  from separated  monolithic  servers,  which
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are connected by the PCIe-based emerging I/O inter-

connects, as shown in Fig.4. For example, an applica-

tion can request  CPU resources  from the  first  server

and  memory  resources  from  three  different  servers.

During the execution, the application can also offload

the compute to where  the data resides,  e.g.,  the sec-

ond  and  third  servers  in Fig.4.  The  benefits  are

twofold. First, PCIe has emerged as the dominant in-

terconnect  technology  and  is  widely  adopted  in  the

server  design.  Hence,  all  the  legacy  servers  support-

ing the compatible PCIe standards can be integrated

into  the  disaggregated  datacenter,  saving  the  cost  of

the  total  redesign.  Second,  the  PCIe  technology  can

provide  good  scalability  with  ultra-low  latency.  For

example, both CXL and InfiniBand are built atop the

PCIe bus. CXL can provide sub-microsecond-scale la-

tency  in  a  rack-scale  server[8],  and InfiniBand  sup-

ports  around  a  few  thousand  connected  servers  with

microsecond-scale  communication  latency[21].  In  addi-

tion,  the  I/O  interconnects  can  add  new  features  to

the  transport  layer,  such  as  reliable  connection  and

hardware-support  traffic  congestion  control.  As  a  re-

sult,  a single application can be equipped with thou-

sands  of  cores  and  petabyte-level  memory,  which  is

far  beyond  the  assumptions  and  expectations  of  the

existing  resource  management  mechanisms  and  pro-

gramming  models[22].  For  example,  the  widely  de-

ployed 4-level  paging only supports  up to 256 TB of

virtual  address  space  and  64  TB of  physical  address

space. It is also impractical to expect programmers to

manage  such  huge  memory  resources  in  fine-grained.

Hence,  how  to  manage  such  a  large-scale  server  re-

mains a challenging problem.

Resource  disaggregation  simplifies  the  mainte-

nance  of  datacenter  hardware  and  improves  resource

management efficiency by virtualizing hardware com-

ponents  as  resource  pools.  First,  the  new  hardware

components  can  be  dynamically  added  to  the  re-

source pool without interrupting the execution of de-

ployed  applications.  Second,  resource  disaggregation

can  cope  well  with  the  increasing  hardware  hetero-

geneity— all  the  domain-specific  accelerators  are  ag-

gregated as different kinds of pools and are available

to the whole datacenter without considering their de-

ployed  locations.  However,  resource  disaggregation

complicates  resource  management  by  introducing

asymmetric  performance  to  homogeneous  hardware

resources.  For  example,  each  application  can  acquire

CPU,  memory  and  accelerator  resources  from  differ-

ent nodes and reorganize them as a virtualized server,
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Fig.4.  Rack-scale server built from monolithic servers which are connected via the ultra-low latency I/O interconnects. An applica-
tion can request resources from different servers and treat the acquired resources as a virtualized server under the management of a
single system image.
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as  shown in Fig.4.  As  a  result,  the  memory resource

of  an  application  may  come  from  several  different

servers  and  the  performance,  e.g.,  latency  and  band-

width,  may  vary  significantly  according  to  intercon-

nect  topology.  These  new  challenges  may  cause  se-

vere performance degradation and extensive QoS vio-

lations to the existing cloud applications[23]. Hence, it

is  necessary  to  extend  the  existing  VM management

framework, e.g., Kubernetes (k8s), to be aware of the

performance variation of CPU and memory resources

during  the  allocation  and  migration.  In  other  words,

resource  disaggregation  tends  to  shift  the  burden  of

resource  management  from  developers  to  cloud  sys-

tems  to  exchange  the  scalability  and  efficiency  of

hardware  development.  We will  further  discuss  these

new challenges in Section 3. 

2.2.2    Operating System (OS)

OS is the new firmware. The core functionality of

the  disaggregated  OS  is  to  aggregate  and  virtualize

the  disaggregated  hardware  components  as  central-

ized  resource  pools  and  provide  standard  POSIX  in-

terfaces  to  upper-layer  applications.  In  addition,  the

disaggregated  OS  is  also  expected  to  provide  strong

performance  isolation  and  fault-tolerance  to  support

the multi-tenant nature of the disaggregated datacen-

ter.

By supporting the standard POSIX interfaces, the

legacy applications  can run on a  disaggregated data-

center  unchanged  while  transparently  reaping  the

benefits  such  as  higher  resource  utilization,  indepen-

dent failure domains and so on. The key challenge to

building  such  a  disaggregated  OS  is  to  seamlessly

group  distributed  resources  used  to  be  co-located  in

close proximity. Among all, the most challenging part

is  disaggregating  memory  from  CPU  with  good  per-

formance and management efficiency. Despite its sim-

ple  abstraction  and  backward  compatibility,  stan-

dard SSI (single-system image) disaggregated OS has

non-trivial overheads due to its CPU-centric design[2].

Consequently, a series of OS prototypes are proposed

to  improve  the  disaggregated  memory  resource  man-

agement  efficiency  from  the  data-centric[24] and  the

resource-centric[25] to the fabrics-centric design[26].

The  datacenter  is  designed  to  be  shared  by  di-

verse cloud applications. The disaggregated OS should

be responsible for providing performance isolation for

the co-running applications. For example, a bunch of

dedicated memory-disaggregation data planes are pro-

posed  to  mitigate  the  microsecond-scale  latency  via

prefetching[27], data migration[28] and compute offload-

ing[4, 12].  All  these  techniques  rely  on  application  se-

mantics  monitoring  and  recognition.  However,  all

these co-running applications share the same I/O in-

terconnect,  and  the  mixed  memory  access  patterns

significantly  reduce  the  aforementioned  memory-dis-

aggregation  management  efficiency[3, 23].  Hence,  it  is

necessary to provide strong isolation on the memory-

disaggregation  data  plane  and  further  enable  the

adaptive management policies of the co-running appli-

cations. Besides, due to the far more complicated re-

source-sharing  scenarios  in  a  disaggregated  datacen-

ter, the disaggregated OS is also expected to provide

robust execution environments[29]. 

2.2.3    Runtime System

Runtime is the key to bridging the semantics gap

between diverse applications and disaggregated archi-

tectures. As we mentioned above, resource disaggrega-

tion  brings  hardware  resource  heterogeneity  to  the

datacenter, and the disaggregated OS is only responsi-

ble  for  providing  basic  resource  management  mecha-

nisms.  Due  to  lacking  specialized  optimizations  for

disaggregated  architectures,  the  system-level  opti-

mizations are usually under-performed. Hence, on the

one hand, the system builders increasingly rely on the

application  developers  to  pass  more  program  seman-

tics  down  to  the  low-level  systems  to  improve  man-

agement  efficiency,  e.g.,  data  prefetching  and  job

scheduling.  Hence,  a  series  of  new  programming  ab-

stracts,  e.g.,  user-level  threads[30] and logical  process-

es[31], are proposed to allow programmers to explicitly

elaborate  the  program for  disaggregated  hardware  in

fine-grained.

However, on the other hand, application develop-

ers  tend  to  use  high-level  programming  languages,

e.g., Java, Python and Scala, which hide the compli-

cated  resource  management  details  from  developers

and  let  them  focus  on  designing  the  program  logic.

Hence,  it  is  not  practical  to  expose  these  extensive

hardware  features  to  the  application  developers  and

shift all the optimization burden to them. In order to

fix  the gap,  a new trend is  to design domain-specific

(language)  runtime via  the  newly proposed program-

ming  abstracts  and  mask  out  the  hardware  hetero-

geneity by only providing easy-to-use interfaces,  e.g.,

single  address  space  and  automatic  data  reclamation

and migration,  to  the  application  developers.  By fol-
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lowing this philosophy, a series of resource-disaggrega-

tion-friendly data structures[32–35] and semantics-aware

cross-layer systems[3, 4, 9, 12, 36] are proposed. 

2.2.4    Summary

The emerging network technologies bring opportu-

nities  to  build  large-scale  clusters  and  also  introduce

challenges to the existing cloud software stacks. 

3    New Challenges from Resource

Disaggregation

The existing cloud software stacks, e.g., operating

system, language runtime and programming abstracts,

are  designed  for  the  CPU-centric  monolithic  server.

On  the  one  hand,  the  system-level  optimizations  for

the  conventional  hardware  have  been  well  exploited,

e.g.,  the  kernel  blocking  layer  relies  on batching  and

thread-level parallelism to mitigate the storage access-

ing latency and the compiler can reorder the instruc-

tions  to  take  full  advantage  of  the  CPU's  out-of-or-

der execution. On the other hand, the hardware is al-

so  optimized  to  accelerate  the  execution  of  the  pro-

gram,  e.g.,  adding  the  TLB  (Translation  Lookaside

Buffer)  to  speed  up  the  virtual  address  translation

and atomic instructions to simplify parallel  program-

ming. That is to say, the existing cloud software stack

is tightly coupled with the characteristics of the con-

ventional architectures of the monolithic server.

However, the server paradigm-shifting to resource

disaggregation results in a mismatch between the ex-

isting software stack and the hardware features, lead-

ing to several  new challenges to the cloud—significa-

nt  performance  degradation  due  to  the  microsecond-

scale latency, severe QoS violations due to the hetero-

geneity of disaggregated datacenter, and the costly in-

ter-server synchronization. In the following of this sec-

tion, we will take memory disaggregation as an exam-

ple  to  demonstrate  the  new challenges  introduced  to

cloud systems. 

3.1    Lack of Microsecond-Scale Event

Mitigation Techniques

The  emerging  I/O  interconnects  introduce  a  new

type of latency, microsecond-scale, to the cloud, inval-

idating  many  existing  system-level  mechanisms  and

optimizations.  Taking  memory  disaggregation  as  an

example,  when an application runs on a disaggregat-

ed server, its memory resources may come from sepa-

rated  blades  connected  by  microsecond-scale  I/O  in-

terconnects. The memory resources can be divided in-

to two types with huge latency differences—the nan-

osecond-scale  local  memory (residing with CPU) and

the  microsecond-scale  remote  memory.  The  perfor-

mance  gap  is  so  huge,  reaching  up  to  approximately

10x  to  100x[8, 9, 26],  that  none  of  the  existing  latency

mitigation  techniques  can  be  directly  applied  to

bridge the gap.

The  existing  hardware  latency-mitigation  tech-

niques  lack  parallelism to  hide  the  microsecond-scale

latency.  For  example,  the  modern  out-of-order  CPU

utilizes  the  non-blocking  cache[37–39] to  issue  multiple

outstanding memory requests to hide the nanosecond-

scale  CPU stall  caused  by  memory  access.  However,

due to the hardware limitations, e.g., chip area, cost,

and  design  complexity[40],  the  memory  level  paral-

lelism  is  limited  to  dozens  and  still  a  few  orders  of

magnitude less to hide the microsecond-scale latency.

frontswap

The  existing  software  latency-mitigation  tech-

niques  are  all  designed  for  storage  with  millisecond-

scale  latency.  Applying  them  to  the  disaggregated

datacenter  can even worsen the performance.  Taking

the multi-threading as an example, the context-switch

overhead  of  the  POSIX  thread  reaches  up  to  hun-

dreds  of  nanoseconds[30] and  can  be  longer  if  the

thread is scheduled to a new core, which can further

lead to data movement overhead in the cache hierar-

chy.  Besides,  inappropriate  batching  techniques  can

only  waste  more  CPU  time,  and  state-of-the-art  re-

mote  memory  data  planes[23, 41] tend  to  utilize  the

 interface⑤ to bypass the unnecessary block

layer  optimizations.  However,  the  software  overhead

still accounts for approximately 60% of remote memo-

ry accessing latency[5]. 

3.2    Severe QoS Violations

Resource disaggregation further contributes to the

hardware heterogeneity of datacenters by introducing

asymmetric  performance  to  the  homogeneous  re-

source. For example, memory performance and inter-

core  communication  overhead  within  an  application

may vary significantly according to the I/O intercon-

nect topology[21]. As reported in previous research[42, 43],
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the hardware heterogeneity in conventional monolith-

ic datacenters can slow down applications by up to 2x

and even lead to workload crashes due to resource ex-

haustion. The situation can be much worse in a disag-

gregated cluster. For example, when running on mem-

ory  disaggregated  servers,  applications'  performance

variation  can  reach  up  to  7x,  with  400x  longer  99th

percentile  latency[5, 23].  The  reasons  are  twofold.  1)

Each type of hardware resources is going more hetero-

geneous,  exhibiting  a  huge  performance  gap.  For  ex-

ample, the bandwidth and the latency of local memo-

ry  are  more  than an order  of  magnitude  better  than

remotely attached memory. As a result,  applications'

performance varies significantly when acquiring differ-

ent kinds of memory resources. 2) Interference within

a  disaggregated  cluster  can  be  more  complicated.

Each application spans multiple resource servers, and

each resource server needs to serve many applications.

For example, an application can acquire hardware re-

sources from a single CPU server and several  memo-

ry  servers.  As  a  result,  the  application  will  race  re-

sources  with all  the  other  applications  co-running on

the  related  servers,  leading  to  an  unpredictable  per-

formance variation[23, 44]. 

3.3    Costly Inter-Server Synchronization

In order to satisfy the increasing parallelism of ap-

plications, the scale of computers keeps growing, e.g.,

from  the  symmetric  multiprocessor  (SMP)  server  to

the  Non-Uniform  Memory  Access  (NUMA)  system,

and further shifting to the rack-scale and warehouse-

scale  clusters.  As  a  result,  each  application  crosses

multiple cores with complicated interconnection topol-

ogy,  and  the  data  synchronization  overhead  leads  to

non-trivial  performance  impact[45].  For  traditional

monolithic  servers,  manufacturers  tend  to  provide

hardware  support  for  the  data  synchronization  be-

tween different cores, such as the atomic instructions

and the hardware-support snooping for cache coheren-

cy. Hence, the data synchronization overhead of SMP

and  NUMA  systems  is  within  the  nanosecond  scale.

However,  it  is  very  challenging  to  provide  cache  co-

herency  in  a  rack-scale  cluster  with  thousands  of

cores.  Although  previous  research,  e.g.,  Multicube[46],

FLASH[47],  has  explored  the  possibility  of  building  a

cache-coherent  large-scale  server,  there  is  still  a  lack

of commodity products today. Hence, we assume that

the  software  is  responsible  for  maintaining  the  data

consistency between disaggregated blades[2, 4]. As a re-

sult,  due  to  hardware  limitations,  the  inter-server

communication overhead is orders of magnitude high-

er than the intra-server communication.

As shown in Fig.5, an application with three par-

allel  tasks  executes  on  a  monolithic  NUMA machine

with  hardware-support  cache  coherency,  e.g.,

MESIF[48].  All  three  tasks  are  trying  to  modify  the

same  variable,  e.g.,  application  threads  and  concur-

rent  GC  threads  race  for  the  same  object.  For  task

#1 and task #2, residing in the same SMP processor

and  sharing  the  same  L3  cache,  the  synchronization

overhead  is  around  20  nanoseconds  to  30  nanosec-
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Fig.5.  Multithreaded application executing on a NUMA server equipped with Intel Xeon processors. The Xeon processor provides
atomic instructions and the snooping cache to ease the parallel programming.
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µs

onds  under  the  implementation  with  atomic  instruc-

tions.  And for  the two tasks  (e.g.,  task #1 and task

#3) residing in different NUMA processors,  the data

synchronization  overhead  can  also  be  still  limited

within the nanosecond scale, around 100 nanoseconds

to  150  nanoseconds[10].  However,  if  an  application

runs  on a  disaggregated  cluster,  its  two threads  exe-

cute  on  two  separated  resource  servers  connected  by

the  emerging  I/O interconnects  (e.g.,  InfiniBand),  as

shown in Fig.6. Because of the lack of hardware-sup-

port  cache  coherency,  inter-server  communication  is

usually  implemented  via  message  passing  or  RPC

(Remote Procedure Call), reaching up to 2.3 [24, 49],

more than 10x slower than the intra-server data syn-

chronization. 

4    Semantics-Aware Software Stack

There  are  two  major  trends  in  cloud  computing.

First, cloud applications are becoming increasingly di-

verse. Up to 81% of businesses are already using cloud

technology in one capacity or another[50]. The applica-

tions span a large number of domains, including ma-

chine  learning,  the  Internet  of  Things,  big  data  pro-

cessing,  databases,  etc.,  with  dramatically  different

compute  behaviors  and  memory  usage  patterns.  Sec-

ond,  the  hardware  heterogeneity  starts  dominating

the architecture development due to the largely end-

ing of Moore's Law[51, 52]. Resource disaggregation fur-

ther promotes the trend by introducing resource pool-

ing  and  complicated  I/O  topology,  as  discussed  in

Section 2.  As  a  result,  a  growing  semantics  gap  be-

gins  between  the  diverse  cloud  applications  and  the

heterogeneous datacenter hardware, leading to severe

performance  degradation  and  frequent  Service-Level

Agreement (SLA) violations. Hence, it is necessary to

build cross-layer software stacks to align the comput-

ing behaviors of high-level applications and the char-

acteristics of emerging hardware with program seman-

tics.

In this section, we will  first talk about the major

reasons  leading  to  the  program  semantics  gap  (Sub-

section 4.1), and then demonstrate the architecture of

the  semantics-aware  software  stack  (Subsection 4.2)

and the represented methods to bridge the gap. Both

the industry and academia have made numerous pro-

posals  to  bridge  the  semantics  gap  by  building  new

software  stacks  from  operating  systems  and  abstrac-

tions  to  programming  models.  We categorize  the  ex-

ploration  canvas  into  three  layers:  operating  system

(Subsection 4.3),  runtime  (Subsection 4.4)  and  pro-

gramming  interface  (Subsection 4.5).  This  section  is

by  no  means  a  complete  survey  of  all  related  work.

We  aim  to  describe  the  existing  research  landscape,

how it evolved, and where it is heading. 

4.1    Semantics Gap

The  high-level  programming  languages  (HHL)

provide a variety of runtime supports, e.g., object-ori-

ented  programming  (OOP)  model,  Garbage  Collec-

tion  (GC),  Just-In-Time  (JIT)  compiler,  to  increase
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the development productivity. As a result, developers

focus  on  designing  the  algorithms  instead  of  manag-

ing  the  resource  usage  or  adapting  the  program  to

low-level  hardware.  Hence,  applications  rely  on  the

software stack, e.g., runtime and OS, to monitor and

recognize  the  application's  computing  behaviors  and

optimize  the  performance,  e.g.,  data  layout  adjust-

ment  and  task  scheduling,  for  the  underlying  hard-

ware.  However,  on  the  one  hand,  the  existing  cloud

software  stacks  fail  to  recognize  applications'  diverse

computing  behaviors  due  to  the  hierarchical  design,

resulting in the inefficiency of the optimization strate-

gies.  On the other hand, the existing software stacks

are designed for the legacy hardware, e.g., slow disks

and Ethernet, leading to a mismatch with the emerg-

ing I/O interconnects.  As a result,  the disaggregated

hardware  components  are  under-performed.  The  de-

tails of the major reasons are elaborated below.

Data  Abstraction  Mismatch  Between  Software
Stack Layers. First, each stack layer has unique mech-

anisms and data abstractions for specialized function-

ality. The lack of cross-layer co-design prevents appli-

cation  semantics  from  passing  down  to  the  underly-

ing hardware. For example, as Fig.7 shows, there are

at least three stack layers between the Apache Spark

application and hardware—the distributed framework

(Apache Spark[53]),  Runtime (OpenJDK⑥) and Oper-

ating  System (OS).  Spark  proposes  a  distributed da-

ta  abstraction,  Resilient  Distributed  Dataset  (RDD),

to  ease  parallel  programming  and  improve  the  fault

tolerance of distributed computing. Runtime relies on

the object-oriented programming model to enable au-

tomatic  memory  management,  e.g.,  Garbage  Collec-

tion. At the same time, OS manages data via the vir-

tual address mechanism to provide isolation, portabil-

ity  and  the  ability  of  defragmentation.  As  a  result,

even programmers interact with RDDs via simple op-

erations,  e.g.,  word-count  (scanning  the  data  in  se-

quence).  The simple and clear memory patterns can-

not  be  passed down to  the  OS layer  from the  Spark

framework layer. This is because of the data abstrac-

tion mismatch between stack layers—each RDD con-

tains  thousands  of  objects  distributed  in  discrete  OS

pages.  From  the  perspective  of  OS,  the  program

shows  random memory  patterns  resulting  in  a  series

of  problems,  e.g.,  poor  spatial  locality  and inefficient

prefetching,  resulting  in  significant  performance

degradation and variation[11, 23, 54].

Interference  Between  Semantics-Agnostic  Tasks.
Second,  the  applications  written  in  high-level  lan-

guages  run  with  various  concurrent  service  threads

(tasks),  e.g.,  GC  threads,  JIT  compilation  threads,

with different  compute  behaviors.  Hence,  when these

semantics-agnostic threads co-run on the same server,

all  the  different  semantics  are  mixed  and  cannot  be

distinguished  by  the  underlying  systems,  leading  to

inefficient  management  policies.  As Fig.8 demon-

strates,  even  if  application  threads  have  a  clear  se-

quential  memory  access  pattern,  it  cannot  be  recog-

nized  by  the  underlying  OS  because  of  the  interfer-

ence  with  the  co-running  GC  threads.  Compared

with disabling  the  GC  threads,  the  prefetching  effi-
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ware stacks.
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ciency  is  reduced  by  40%.  Because  these  service

threads  are  crucial  to  providing  vital  functions,  it  is

not practical to disable them directly[3].

Lack  of  Software  Support  for  the  Emerging  I/O
Interconnects.  The  existing  resource  management

mechanisms  and  optimizations  of  the  disaggregated

datacenter are usually under-performed and even lead

to SLA violations and correctness problems, e.g.,  da-

ta inconsistency problems, due to the aforementioned

new system-level challenges introduced by the emerg-

ing  I/O  interconnects  (Section 3).  For  example,  the

existing  OS  cannot  be  aware  of  the  I/O  topology  of

the disaggregated resources and usually fails to sched-

ule the compute-intensive and memory-intensive tasks

to  the  proper  hardware  components.  That  is  to  say,

the application semantics cannot be fully utilized even

if  they  are  successfully  passed  down  to  the  low-level

system.  Hence,  a  redesigned  OS  equipped  with  the

new  programming  abstractions,  e.g.,  disaggregated

process, and disaggregated resource managements are

the basis of the cloud software stacks. 

4.2    Design Overview

In order to bridge the semantics gap, we propose

the  semantics-aware  software  stack  that  conveys  the

diverse  application  information  to  the  heterogeneous

hardware  to  improve  management  efficiency  and  re-

duce  interference  by  aligning  application  behaviors.

As Fig.9 demonstrates,  the  semantics-aware  software

stack contains three basic layers—programming inter-

face,  runtime,  and  operating  system.  Developers  de-

fine  the  behaviors  of  the  runtime  layer  by  providing

explicit  program  semantics  via  programming  inter-

faces.  The  runtime  layer  requests  resources  from the

operating  system and is  in  charge  of  task  scheduling

and  data  migration.  The  operating  system  provides

hardware  virtualization,  basic  resource  management,

and necessary fault-tolerance mechanisms.

The  programming  interface  aims  to  balance  the

programming  productivity  with  necessary  semantics

provision.  For  example,  providing  a  disaggregated

type system to let system developers explicitly decide

the location of fine-grained variables among the disag-

gregated  memory  resources  with  asymmetric  perfor-

mance can significantly improve the data locality and

concurrency safety (Subsection 5.2). However, it is al-

so  essential  to  provide  predefined  disaggregated  data

structures,  tailored for disaggregated memory, to im-

prove the productivity of application developers with

providing fair performance (Subsection 4.5).

Runtime is  responsible  for  providing good perfor-

mance.  Through  utilizing  the  acquired  program  se-

mantics,  runtime  needs  to  adjust  the  data  layout  to
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mitigate  the  microsecond-scale  latency  and  schedule

different tasks to appropriate disaggregated servers to

improve  the  CPU  and  memory  efficiency.  One  step

further, the disaggregated runtime also proposes a se-

ries  of  process,  thread  and  data  models  to  improve

the  efficiency  of  disaggregated  hardware  (Subsection

4.4), such as the user-level thread, Shenango[30], which

can  provide  ultra-high  parallelism  with  fast  context

switch, and the new process model, Nu[31], which sup-

ports microsecond-scale migration. Runtime is the key

to bridging the semantics gap between upper-level di-

verse  applications  and  low-level  heterogeneous  archi-

tectures.

The operating system provides basic management

modules  to  cope  with  the  paradigm-shifting  of  the

datacenter  hardware.  As  the  hardware  components

are  disaggregated,  the  kernel  is  also  split  to  manage

the resources  and provides  communication primitives

between disaggregated nodes[2, 55]. However, the oper-

ating system should largely leave the fine-grained re-

source management to the runtime and only needs to

provide different types and quantities of resources ac-

cording to runtime needs. In addition, due to the mul-

ti-tenant  nature  of  cloud  computing,  the  operating

system also needs to provide device virtualization and

performance  isolation  among  co-running  applications

(refer to Subsection 4.3 for more details). 

4.3    Disaggregated Operating System

An OS designed  for  the  disaggregated  datacenter

will  manage  a  sea  of  disaggregated  hardware  re-

sources and expose a single-system image (SSI) to us-

er-level  programs. Crucially,  it  would maintain back-

ward-compatible APIs for user-level programs to reap

the benefits of resource disaggregation with no or mi-

nor changes.

The  disaggregated  OS  approach  is  a  unique  de-

sign point within the exploration canvas for using dis-

aggregated resources. It was among the initial system-

atic  studies  on  leveraging  disaggregated  resources

since Lim et al.[22] first proposed memory disaggrega-

tion.  Two  generations  of  the  disaggregated  OS  have

emerged:  a  CPU-centric  one  called  LegoOS[2] and  a

data-centric  one  called  FractOS[24].  This  evolution

happens  in  a  short  5-year  span,  reflecting  the  design

philosophy  of  a  disaggregated  OS  changes  as  the

workloads  it  hosts  shift:  the  best  cost-efficiency  is

achieved  when  we  co-design  the  OS  and  the  work-

loads at the sacrifice of flexibility and generality. We

will  now  briefly  discuss  two  pioneer  studies  in  this

space.

CPU-Centric  Disaggregated  OS.  LegoOS[2] is  the

first-generation, CPU-centric disaggregated OS. It of-

fers  a  set  of  Linux-compatible  system  calls  and  can

run  unmodified  Linux  binaries  (such  as  TensorFlow)

over  a  disaggregated  infrastructure.  LegoOS  em-

braces  the  CPU-centric  model.  All  the  orchestration

of data must go through the CPU. In order to expose

an SSI  abstraction,  LegoOS proposes  to  run a  moni-

tor on each disaggregated device, and each monitor is

highly customized to the device it runs on. For exam-

ple, the monitor on a CPU device is only responsible

for  task  execution,  while  the  monitor  on  a  memory

device is responsible for virtual memory handling. OS

functionalities are cleanly distributed among heteroge-

neous  devices.  LegoOS  proposes  a  two-level  resource

management scheme in which a global layer oversees

cluster-wide  resource  allocations,  and  each  monitor

handles  device-local  allocations.  Despite  its  simple

and  backward-compatible  APIs,  LegoOS  incurs  non-

trivial  performance  overheads  (25% for  a  typical  ap-

plication) mainly because 1) both the memory access

latency and bandwidth are  worse  in  the  disaggregat-

ed  setting  compared  to  the  monolithic  setting,  and

2)  the  CPU-centric  model  leads  to  unnecessary  data

copies  among  CPU devices  and  other  devices.  In  or-

der  to  mitigate  these  issues,  the  second  generation

was proposed.

Data-Centric  Disaggregated  OS.  FractOS[24],  as

the  second-generation  disaggregated  OS,  eschews  the

CPU-centric  model  and embraces  a  data-centric  one.

Instead of  exposing a  traditional  POSIX abstraction,

FractOS  expects  a  program  written  in  a  DAG fash-

ion, with each vertex representing a particular opera-

tor  running  on  a  specific  disaggregated  device  and

each edge representing how the data flows. Similar to

LegoOS,  FractOS  runs  a  monitor  on  each  device.

FractOS will  execute  the  DAG based  on  its  descrip-

tion. A unique challenge in building FractOS is ensur-

ing  security  and  isolation.  FractOS  leverages  dis-

tributed  capability  to  solve  this  issue.  However,  the

downside of using FractOS is that programmers need

to  rewrite  legacy  applications  and  adopt  FractOS's

DAG-based programming model.

Fundamentally,  the  design philosophy of  a  disag-

gregated  OS  is  not  different  than  that  of  a  classical

single-node  OS.  There  is  a  constant  tension  between

achieving the best performance and offering good gen-

erality.  LegoOS  aims  for  universal  generality  with

non-trivial  overheads,  in  contrast  to  FractOS,  which

co-designs  with  data  systems  for  the  best  perfor-
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mance. Going forward, we expect more customized so-

lutions will emerge for the best cost-efficiency, and we

believe it is likely a co-design of applications, OS, and

the underlying hardware. 

4.4    Disaggregated Runtime

The  major  philosophy  of  runtime  solutions  is  to

improve  the  system  efficiency  by  exploiting  the  pro-

gram  semantics  and  hide  the  heterogeneity  of  disag-

gregated hardware from application developers[9, 11, 12].

Hence, first,  the disaggregated runtime should be co-

designed with the underlying disaggregated OS to en-

able  the  program  semantics  recognition  and  passing

down to the low-level software stacks to improve the

efficiency  of  system-level  optimizations;  second,  the

runtime also needs to provide disaggregated program-

ming  abstracts  to  ease  the  high-level  cloud  applica-

tion developments. 

4.4.1    Disaggregated  Abstractions  Targeted  at

the Killer Microseconds

µ

In  order  to  fully  take  advantage  of  the  emerging

hardware, the researchers from Berkeley[56], MIT[9, 30, 31]

and  VMWare[12] proposed  several  new  programming

abstractions, e.g., Shenango (user-level thread)[30], Nu

(disaggregated  process)[31],  AIFM  (disaggregated

APIs)[9] and  Kona  (hardware-support  disaggregated

primitives)[12],  to  let  developers  build  disaggregated

applications  from  scratch.  All  these  system  abstrac-

tions target the new challenges discussed in Section 3,

e.g.,  mitigating  microsecond-scale  events  and  provid-

ing  microsecond-scale  task  migration  between  differ-

ent  servers.  For  example,  Shenango is  a  new type of

user-level  thread,  similar  to  the  green  thread  and

coroutine,  optimized for  fast  context  switch.  Shenan-

go  supports  CPU  reallocation  every  5 s,  orders  of

magnitude  faster  than  conventional  POSIX  thread

(PThread). Hence, compared with PThread-based ap-

plications,  Shenango-based  applications  have  much

higher  thread-level  parallelism.  On  the  one  hand,

when  triggering  a  microsecond-scale  remote  memory

access, the lightweight Shenango thread can yield the

CPU  resources  to  other  ready  Shenango  threads  to

improve CPU efficiency. On the other hand, Shenan-

go-based applications  can issue  many more  in-the-fly

remote memory access requests to saturate the avail-

able RDMA bandwidth to improve the memory-level

parallelism further.

Other  abstractions  also  provide  novel  functions

based on the  emerging I/O interconnects:  Nu[31] pro-

poses  a  new  disaggregated  process  model,  which  di-

vides  the  process  into  dozens  of  prolects,  and  allows

the prolect to be migrated between different nodes of

a rack-scale  server  within 100 μs;  Kona[12] allows the

user  to  fetch  data  from  memory  servers  in  fine-

grained  granularity,  i.e.,  cache  line,  to  eliminate  the

read/write  amplification caused by the existing swap

system.

Developers  can  rebuild  the  applications  for  the

disaggregated  datacenter  with  these  newly  proposed

hardware-specific abstractions to enjoy the benefits of

resource disaggregation. However, such clean-slate so-

lutions  cannot  support  the  existing  applications.  De-

velopers  also  need to  make great  efforts  to  elaborate

their programs to achieve reasonable performance. Al-

though rebuilding every program is infeasible for both

industrial  and  academic  developers  relying  on  count-

less  open-source  libraries  and  software,  we  believe

that  these  new prototypes  and abstractions  have the

potential to reshape cloud systems in the future. 

4.4.2    Semantics-Aware  Runtime  Improving  the

Efficiency of System Management

The disaggregated runtime is responsible for moni-

toring  program  semantics  and  guiding  the  behaviors

of  low-level  system policies.  Hence,  semantics  aware-

ness started becoming the design principle of modern

disaggregated runtime—horizontally, the runtime shou-

ld  recognize  and  isolate  the  semantics  of  different

tasks  to  avoid  interference;  vertically,  the  cross-layer

design  enables  the  semantics  propagation  from  user

layers to the underlying kernel and virtualization lay-

er.

Horizontally,  Semeru[4] separates  the  application

threads  and  GC threads,  and  schedules  them  to  the

CPU servers  with  powerful  computing  resources  and

the  memory  servers  where  the  data  resides  corre-

spondingly.  The  benefits  are  twofold.  First,  Semeru

reduces the interference of semantics-agnostic threads.

Second,  the  GC  threads  can  run  concurrently  and

continuously  in  the  memory  servers  without  inter-

rupting and racing resources with application threads.

And  then  they  proposed  a  new concurrent  GC algo-

rithm, Mako[36],  to further exploit the concurrency of

GC threads running on the memory servers.  For the

tasks running on the CPU server, MemLiner[3] is pro-

posed as  a  way to reconcile  the memory footprint  of

application  threads  and  service  threads,  e.g.,  object
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tracing. After the above optimizations, the semantics

of applications can be passed down to the underlying

system  stacks,  which  significantly  improves  the  effi-

ciency of existing management policies,  e.g.,  the cov-

erage and accuracy of OS prefetching[27] are improved

by  50%  and  70%,  respectively.  Besides,  these  opti-

mization  can  reduce  the  memory  footprint  of  cloud

applications,  which  leads  to  56%  less  costly  remote

memory access.

Vertically,  application-integrated  far  memory

(AIFM)[9] designs semantics-aware prefetcher, evacua-

tor and frequently used data structures, e.g., hash ta-

ble, based on the Shenango threads. With the help of

program  semantics,  the  efficiency  of  system-level

mechanisms  is  significantly  improved.  For  example,

AIFM  prefetcher  can  accurately  fetch  data  at  fine-

grained granularity,  i.e.,  object,  which eliminates  the

read/write  amplification  of  paging-based  far-memory

data  path,  e.g.,  Fastswap,  and  improves  throughput

via extremely high thread-level parallelism of user-lev-

el threads.

Similarly, Panthera[11] matches the distributed da-

ta  structures  with  the  runtime  objects  and  the  low-

level OS pages to improve the data layout on hybrid

memory.  Panthera  allows  users  or  compilers  to  tag

properties,  e.g.,  hot,  cold  or  fault-tolerant,  on  differ-

ent  data  structures.  And  then  Panthera  utilizes  the

GC to automatically and transparently propagate the

semantics to the related objects and then compact the

discrete  objects  into  contiguous  pages  according  to

the preference of users. As a result, the computing be-

haviors and memory access patterns on the distribut-

ed  data  structures  can  be  clearly  recognized  by  the

underlying OS and hardware,  which significantly im-

proves  the  efficiency  of  low-level  optimizations,  such

as  data  prefetching  and  data  layout  adjustment.  In

order  to  bridge  the  semantics  gap,  a  series  of  new

hardware  prototypes  are  also  proposed,  such  as  the

Programmable  Architecture  for  Resourcing-on-De-

mand (PARD)[57] and HoPP[28].

In  addition,  the  disaggregated  runtime  provides

the same programming interfaces with the monolithic

programming model, e.g., single address space and ob-

ject-oriented  programming.  As  a  result,  the  burden

shifts  from application developers  to system develop-

ers and all the existing managed applications can ben-

efit from these systems transparently. 

4.5    Disaggregated Programming Interface

Data  structures  are  fundamental  building  blocks

of many cloud applications, e.g., databases, key-value

stores,  and  file  systems,  used  for  organizing,  storing,

and retrieving data. Conventional data structures are

originally  designed  for  and  used  in  local  memory,

which,  however,  become  inefficient  in  disaggregated

memory  (DM)  systems.  This  is  mainly  due  to  the

challenges discussed in Section 3, such as the big per-

formance  gap  between  the  local  memory  with

nanosecond-scale latency and the disaggregated mem-

ory with microsecond-scale latency.  Researchers from

both industry and academia started reinventing data

structures that are aware of the characteristics of dis-

aggregated  memory.  These  DM-aware  data

structures[32–35, 58–61] have much better  spatial  locality

and support task offloading to mitigate the aforemen-

tioned  microsecond-scale  events.  In  this  subsection,

we  present  the  general  design  guidelines  via  several

critical  data  structures,  e.g.,  hash  table,  tree,  and

learned index, which are widely used in cloud applica-

tions. 

4.5.1    Hash Table

Hash  tables  are  popular  data  structures  that  are
widely  used  to  develop  latency-critical  applications
and provide fast lookup services in distributed memo-
ry  systems,  such  as  the  Memcached⑦ and  Redis⑧.
However, due to a lack of consideration of the charac-
teristics of the disaggregated resources, e.g., the asym-
metric  performance  of  the  memory  resource  (Subsec-
tion 3.3),  the  applications  exhibit  significant  perfor-
mance  degradation  and  variation,  causing  excessive
QoS violations (Subsection 3.2).

Zuo et  al.[35] proposed  RACE,  a  disaggregated
hash  table  with  three  new techniques  to  address  the
challenges. First, RACE introduces a concurrent lock-
free  remote  access  mechanism  to  hide  the  microsec-
ond-scale  latency  by  increasing  the  memory  paral-
lelism. Second, in order to reduce the QoS violations,
RACE presents a one-side RDMA-conscious hash ta-
ble  structure  that  achieves  constant  worst-case  RD-
MA access  times  for  all  operations,  including  search,
insert, delete, and update. Finally, RACE leverages a
client-side  directory  cache  to  reduce  the  remote  ac-
cess  to  the  directory  of  the  hash  table  and  designs
three  rules  for  detecting  and  resolving  the  cache  in-
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consistency  cases.  Based  on  RACE[35],  Shen et  al.[32]

designed  a  fully  memory-disaggregated  key-value

store called FUSEE. FUSEE guarantees the data con-

sistency  of  multiple  hash  table  replicas  stored  in  the

disaggregated  memory  and  is  able  to  tolerate  both

client and server failures. 

4.5.2    Tree

Computing on tree data structures tends to exhib-

it  pointer-chasing  style  irregular  memory  access  pat-

terns that rely on the accessed data to determine the

following memory accesses. Compared with other ap-

plications,  tree-based  applications  are  more  memory

latency sensitive and perform much worse when run-

ning on the memory disaggregated servers.  Based on

these  semantics,  it  is  necessary  to  design  DM-aware

tree  data  structures  to  achieve  reasonable  perfor-

mance.

Ziegler et  al.[58] proposed  the  first  tree  index  FG

that  purely  employs  one-sided  RDMA  verbs.  FG  is

built on a B-link tree structure (a variant of the B+-

tree) to support disaggregated memory. Wang et al.[59]

proposed  a  write-optimized  B+tree  Sherman  to

achieve higher performance on disaggregated memory.

Sherman combines the local lock table and global on-

chip  lock  table  to  reduce  the  overhead of  concurrent

accesses  and  presents  a  two-level  version  mechanism

to reduce the remote write amplification. Luo et al.[34]

proposed that  the  Radix  tree  is  a  more  suitable  tree

index  for  disaggregated  memory  than  the  B+  tree

since it has less remote read and write amplifications.

They presented the first  Radix tree designed for  dis-

aggregated  memory  called  SMART.  SMART  lever-

ages lock-free internal nodes and lock-based leaf nodes

to  reduce  the  lock  overhead,  a  read-delegation  and

write-combining  mechanism  to  improve  the  overall

throughput,  and  a  reverse  check  method  to  validate

the cache consistency. 

4.5.3    Learned Index

Learned  indexes[60, 61] are  a  new  type  of  indexes

that  leverage  machine  learning  methods  to  learn  the

cumulative  distribution  function  of  the  sorted  keys.

Due  to  the  small  model  size,  learned  indexes  have

much  lower  memory  space  overhead  and  higher  per-

formance  than  tree  indexes.  Several  scalable  learned

indexes  are  proposed  for  the  disaggregated  memory

system,  e.g.,  XStore[60],  ROLEX[33].  However,  ma-

chine  learning  models  are  only  good  at  static  work-

loads,  such  as  read  and  scan.  The  dynamical  work-

loads,  e.g.,  insert and delete,  keep changing the data

structure, which leads to the need to retrain the ML

models.  In  order  to  address  this  challenge,  XStore

proposes  a  hybrid  path that  leverages  the  tree  index

for  dynamical  workloads  and  the  learned  index  for

static  workloads.  ROLEX  proposes  to  decouple  the

retraining of learned models from the dynamic opera-

tions.  By  doing  so,  model  retraining  can  be  pushed

down  to  the  memory  pool  and  executed  asyn-

chronously.  The  insertion  operations  are  executed  in

the  compute  nodes  via  pure  one-sided  RDMA verbs,

delivering high performance and scalability. 

5    Open Problems

The  high  demand  for  memory  capacity  and  the

urgent  need  to  improve  resource  utilization  motivate

the  explosive  development  of  resource  disaggregation

technologies.  As  new I/O interconnects  are  being  in-

troduced  to  the  market[8],  system developers  need  to

pay more attention to the new features and reinvent

the  system-level  mechanisms  and  optimizations.  In

this section, we will discuss the new research trends in

the cloud system. 

5.1    Hardware for Disaggregation

Hardware evolution is the driving force behind the

redesign  of  cloud  software  stacks.  Crucially,  the  fast

datacenter network plays a key role in making disag-

gregation a reality since resources used to be accessed

within  a  single  chassis  via  high-speed PCIe  intercon-

nect  are  now  accessed  through  emerging  datacenter

networking with comparable performance. Akin to the

OS  design  philosophy  shift,  monolithic  servers  no

longer  fit  as  the  building  blocks  of  a  disaggregated

datacenter.  In  response,  customized  devices  tailored

for disaggregated datacenters have been proposed. In

this subsection, we will review notable studies related

to networks and disaggregated devices. 

5.1.1    Datacenter Networking

The Compute Express Link (CXL)[6] is an emerg-

ing  interconnect  technology  for  memory  disaggrega-

tion. It offers sub-microsecond-level access latency for

rack-scale  memory,  akin  to  accessing  memory  on  a

neighboring  NUMA  node.  Accessing  disaggregated

memory  via  CXL is  much faster  than  canonical  net-

working  technologies  such  as  Ethernet.  Essentially,

CXL shortens the software path from where applica-
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tions  access  memory  via  load/store  instructions  (or

explicit  APIs)  to  where  the  network  requests  are

transmitted.  CXL achieves so by claiming a segment

of  PCIe  bus  addresses  and  hardening  the  translation

from  local  application  semantics  (e.g.,  load/store  or

explicit  APIs)  to  network  requests  (e.g.,  PCIe  pack-

ets)[6].

Aquila[62] is a recent work that revisits the decade-

old datacenter networking infrastructure and calls for

a tightly-coupled one tailored for resource disaggrega-

tion.  Aquila  proposes  to  break  the  strict  boundaries

among  layered  network  protocols  and  co-design  the

transport layer and link layer for the best tail latency.

It also proposes to use a Dragonfly topology to group

heterogeneous  disaggregated  resources  in  close  prox-

imity  instead  of  using  a  traditional  multi-tier  Clos

topology. Aquila offers many insights on how a disag-

gregated datacenter can be deployed at a large scale.

A key challenge in using these emerging I/O inter-

connects  is  that  the  asymmetric  performance  of  the

memory resource complicates the system design (Sub-

section 3.2). Take memory disaggregation as an exam-

ple.  The  CXL-attached  memory  exhibits  approxi-

mately 3x to 5x larger latency than the local memory

in a rack-scale server[8] which limits the scalability of

building  larger-scale  clusters  due  to  the  increasingly

complicated  networking  topology.  System  developers

need  to  carefully  partition  and  migrate  data  among

the disaggregated servers to achieve reasonable perfor-

mance.  The  complicated  design  of  the  existing  cloud

software  stacks  keeps  weakening  the  predictability,

stability  and  security  of  the  cloud[63].  Hence,  how  to

reduce the disorders and improve the efficiency of the

cloud  via  software-hardware  co-design  stays  a  chal-

lenging problem. 

5.1.2    Disaggregated Devices

Since  the  monolithic  server  is  an  ill-fit  for  build-

ing disaggregated datacenters, many researchers have

proposed  customized  devices.  Notably,  Clio[64],

Farview[65],  and  StRoM[66] are  FPGA-based  disaggre-

gated memory devices. By design, they have no beefy

CPUs  attached  and  only  adopt  a  wimpy  CPU  for

control  and  management.  Their  data  path  is  cus-

tomized for remote data access. They usually support

offloading  user-defined  operators  onto  the  devices  to

achieve near-data processing.  For instance,  StRoM[66]

has a remote pointer-chasing API, Clio offers remote

KV semantics,  and Farview can run database  opera-

tors.  As  the  disaggregation  architecture  matures,  we

expect more customized devices to emerge and flour-

ish in areas like disaggregated storage and computing

devices.

These  heterogeneous  devices  are  highly  special-

ized  and  can  only  speed  up  limited  domain-specific

tasks. If the underlying systems cannot correctly rec-

ognize the behaviors of different computing tasks and

schedule  them  to  proper  devices,  these  applications

will  be  under-performed  and  pay  heterogeneity  tax.

However,  the  ability  of  software-based  program ana-

lytics  is  limited,  and  the  system  developers  expect

emerging  devices  to  provide  more  hardware  support

for program instrumentation and monitoring. 

5.2    Programming Language for

Disaggregation

Designing  disaggregated  programming  models

with  proper  runtime  support  and  letting  the  system

developers build semantic-aware systems from scratch

can reduce the performance overhead and potentially

eliminate  the  data  inconsistency  introduced  by  the

disaggregated  architecture.  As  we  discussed  in Sec-

tion 3, when running on a memory disaggregated dat-

acenter, the performance overhead mainly comes from

the inter-server data movement and thread-level syn-

chronization.  Hence,  we think that the disaggregated

programming language should have the ability to ex-

press  the  correlations  between  1)  data  and  data,  2)

thread  and  data,  3)  thread  and  thread,  which  can

help the runtime system precisely and efficiently rec-

ognize  the  application's  compute  and  data  accessing

behaviors. And then, this information can be utilized

to  improve  the  effectiveness  of  system-level  manage-

ment  mechanisms,  e.g.,  thread  scheduling  and  data

migration. 

5.2.1    Data Management

Although  there  are  a  series  of  data  management

research,  e.g.,  prefetching  techniques[9, 27, 67],  data

eviction mechanisms[5, 41] and data layout adjustment

optimizations[11, 68, 69],  how  to  mitigate  the  microsec-

ond-scale inter-server data accessing latency stays one

of  the  most  challenging  problems  in  the  disaggregat-

ed datacenter[7]. For example, in order to address the

inaccuracy and data amplification problem of the pag-

ing-based remote memory management[20, 41],  AIFM[9]

launches  dozens  of  threads  to  periodically  scan  and

categorize the data in fine-grained object granularity.

These  online  profiling  threads  consume and race  sig-

nificant  CPU  resources  with  application  threads,

which in turn degrades the application's performance.
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Hence,  such  a  solution  only  shifts  the  space  racing

problem, e.g., hot data vs cold data, to another CPU

resource  racing  problem,  i.e.,  application  threads  vs

profiling  threads.  There  is  no  panacea  for  the  chal-

lenge of data management in a heterogeneous memo-

ry system.

However,  with  the  guidance  of  programming

hints,  the  relationship  between  different  objects  can

be quickly identified with low overhead. The benefits

are twofold: first, the correlated objects can be moved

between  disaggregated  servers  in  batches,  reducing

the data migration overhead; second, the data access

patterns  can  be  recognized  via  the  static  program

analysis,  e.g.,  during  the  compilation,  which  can  be

used to precisely prefetch the useful data to hide the

microsecond-scale latency. Hence, we believe it is rea-

sonable  and  profitable  to  extend  the  type  system  or

annotation  system  of  the  programming  language  to

the disaggregated architectures. 

5.2.2    Thread Synchronization

As we discussed in Subsection 4.1, in order to ful-

fill  the  increasing requirements  of  users  and develop-

ers,  the  cloud  applications  are  equipped  with  more

and  more  threads  (tasks).  For  example,  a  database

application,  Cassandra⑨,  contains  over  100  separate

tasks,  including  persistent  tasks,  networking  service

tasks,  garbage  collection  (GC)  tasks,  caching  tasks,

etc. These concurrent tasks are usually semantics-ag-

nostic  and tend to cause  various  performance bottle-

necks  due  to  resource  racing  and  lock  contention.

Making things more challenging, the existing trend is

to increase the thread-level parallelism to hide the mi-

crosecond-scale  latency  that  widely  exists  in  the  dis-

aggregated  cluster[9, 30].  Hence,  letting  developers  de-

fine the thread synchronization via message passing to

improve  the  task  scheduling  efficiency  is  becoming

necessary, although such a design may incur non-neg-

ligible programming efforts to developers and commu-

nication overhead between threads.

In addition, we can utilize the ownership⑩ to ex-

plicitly  define  the  correlation  between  data  and

threads during the execution and help multi-threaded

applications to guarantee data consistency when run-

ning  on  disaggregated  servers.  There  are  some  pio-

neering  studies  targeting  reducing  the  thread locking

and data  racing  by carefully  orchestrating  the  paral-

lel  threads,  such  as Singularity[70] and  MemLiner[3].

However,  balancing  the  expressiveness  and  program-

ming efforts of a language remains a challenging and

open problem. 

5.3    Other Important Problems

Fault-Tolerance. Although  memory  disaggrega-

tion improves resource utilization by allowing applica-

tions to request resources across multiple servers, this

paradigm weakens the robustness of the memory sys-

tem. Compared to the monolithic cluster, each memo-

ry  server  in  the  disaggregated  cluster  can  be  shared

by more applications. Hence, a memory server failure

can  potentially  have  a  much  wider  impact  on  the

cloud.  Some  fault-tolerance  mechanisms  have  been

proposed  recently  to  help  the  applications  recover

from a memory sever failure, e.g., Carbink[29] and Hy-

dra[71].  However,  these erasure-coding based solutions

lead  to  nontrivial  performance  and  space  overhead.

For  example,  limited  by  the  erasure-coding  calcula-

tion, Carbink only supports data swapping in and out

at span (several pages) granularity, resulting in signif-

icantly read/write amplification[12]. Besides, the space

overhead can reach up to 35%, which almost cancels

out  the  benefits  of  memory  utilization  improvement.

At the same time, the conventional ECC (Error Cor-

rection  Code)  technology  cannot  be  directly  applied

to  the  remotely  attached memory due  to  the  lack  of

hardware  support.  Hence,  how to  build  a  fault-toler-

ant  memory  system  stays  a  challenging  and  impor-

tant research topic for the disaggregated datacenter.

Quality  of  Service (QoS).  Although  the  QoS  has

been well exploited from networking to CPU schedul-

ing and memory systems in the past decades[72–76], as

we mentioned in Section 3,  it  remains a severe prob-

lem in the disaggregated cloud, and is becoming even

more  challenging  due  to  the  complicated  resource-

sharing situations.

µ

Storage  and  Accelerator  Disaggregation.  Unlike

CPUs  and  memory,  the  storage  and  accelerator  re-

sources are already I/O attached. Hence, the fast I/O

interconnects  bring  more  opportunities  than  chal-

lenges to the existing storage and accelerator systems,

e.g.,  cache  layer,  block  layer,  file  system,  accelerator

runtime and programming models.  For example, blk-

switch[77] proposes  a  redesigned  kernel  block  layer  to

achieve s-scale  tail  latency  for  applications  running

on  clusters  with  disaggregated  storage.  In  addition,

the  emerging  interconnect,  e.g.,  NVLink-C2C,  allows
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NVIDIA  to  build  the  rack-scale  GPU  cluster,  DGX

GH200⑪.  The  NVLink-C2C  provides  hardware-sup-

port  cache  coherence  to  the  connected  CPU (Grace)

and  GPU  (Hopper),  which  significantly  reduces  the

programming overhead for  managing  the  data  move-

ment  and  maintaining  the  data  consistency  between

GPU and CPU.

Resource  disaggregation  presents  so  many  active

challenges  and  opportunities  for  the  existing  cloud

systems. It is time to reinvent the software stacks for

this emerging architecture. 

6    Conclusions

The resource disaggregation pushes the scalability,

availability,  and serviceability  of  cloud computing  to

the Next Era. At this moment, we should rethink the

design of cloud software stacks, from programming in-

terfaces and runtime to the operating systems, to ful-

ly  take  advantage  of  the  benefits  and  cope  with  the

new challenges introduced by the disaggregated archi-

tectures. 
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