

Reinvent Cloud Software Stacks for Resource Disaggregation

Chen-Xi Wang1, 2 (王晨曦), Member, CCF, ACM, IEEE, Yi-Zhou Shan3 (单一舟)
Peng-Fei Zuo3 (左鹏飞), Member, CCF, and Hui-Min Cui1, 2, * (崔慧敏), Member, CCF, IEEE

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2 University of the Chinese Academy of Sciences, Beijing 101408, China
3 Huawei Cloud, Shenzhen 518129, China

E-mail: wangchenxi@ict.ac.cn; shanyizhou@huawei.com; pengfei.zuo@huawei.com; cuihm@ict.ac.cn

Received April 3, 2023; accepted September 1, 2023.

Abstract Due to the unprecedented development of low-latency interconnect technology, building large-scale disaggre-

gated architecture is drawing more and more attention from both industry and academia. Resource disaggregation is a new

way to organize the hardware resources of datacenters, and has the potential to overcome the limitations, e.g., low re-

source utilization and low reliability, of conventional datacenters. However, the emerging disaggregated architecture brings

severe performance and latency problems to the existing cloud systems. In this paper, we take memory disaggregation as

an example to demonstrate the unique challenges that the disaggregated datacenter poses to the existing cloud software

stacks, e.g., programming interface, language runtime, and operating system, and further discuss the possible ways to rein-

vent the cloud systems.

Keywords cloud computing, resource disaggregation, datacenter, program semantics

1 Introduction

The urgent demand of cloud providers to improve

the reliability, availability, and serviceability (RAS)

of datacenters promotes the rapid development of re-

source disaggregation technologies in the fields of

hardware, systems, and applications[1–3]. In a disaggre-

gated datacenter, hardware resources (e.g., CPU,

memory, storage, and accelerators) are grouped as re-

source pools by connecting the individual servers over

emerging I/O interconnects[1], as Fig.1 shows. On the

one hand, from the perspective of an application, it

can acquire resources from the large-scale cluster

without considering the limitations of an individual

server, increasing the amount of CPU and memory

that can be accessed by orders of magnitude. On the

other hand, from the perspective of the cluster, a

server with any type of available resources can be uti-

lized by the application without considering the avail-

ability of other types of resources, which significantly

improves the resource utilization of the datacenter.

Due to the potentially huge benefits, both industry

and academia devote much research to resource disag-

gregation. Due to the requirements of ultra-low com-

munication latency, the CPU and memory resources

Survey

This work is supported by the National Key Research and Development Program of China under Grant No. 2022YFB4500400.
*Corresponding Author

Storage
Resources

CPU
Resources

NVM
Resources

Accelerators

Fast Network
(e.g., InfiniBand)

Memory
Resources

Fig.1. Overview of a disaggregated datacenter. All the servers
are connected by the fast I/O interconnects and reorganized as
different types of resource pools.

Wang CX, Shan YZ, Zuo PF et al. Reinvent cloud software stacks for resource disaggregation. JOURNAL OF COMPUT-

ER SCIENCE AND TECHNOLOGY 38(5): 949−969 Sept. 2023. DOI: 10.1007/s11390-023-3272-0

©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://doi.org/10.1007/s11390-023-3272-0
https://doi.org/10.1007/s11390-023-3272-0
https://doi.org/10.1007/s11390-023-3272-0
https://doi.org/10.1007/s11390-023-3272-0
https://doi.org/10.1007/s11390-023-3272-0
https://doi.org/10.1007/s11390-023-3272-0
https://doi.org/10.1007/s11390-023-3272-0

are tightly coupled until recently. Hence, existing sys-

tems are all designed for conventional monolithic

servers. As a result, the disaggregated architecture

brings several severe challenges to the existing cloud

software stacks due to its three characteristics—mi-

crosecond-scale latency, asymmetric performance, and

costly synchronization. When running on disaggregat-

ed servers, applications can slow down 2x with 400x

longer tail latency[4, 5].

New Challenges from Emerging I/O Interconnects.
To keep pace with the scale of cloud applications, the

I/O interconnect is progressing at an unprecedented

speed to provide extremely high bandwidth and low

latency. Recently, the I/O latency has been reduced

to a microsecond-scale, the bandwidth can reach up

to dozens of gigabytes per second[6], and the perfor-

mance starts being comparable with the on-die inter-

connect. The fast network allows the decoupling of

the tightly coupled CPU and memory resources. How-

ever, on the one hand, as Barroso et al. discussed in

[7], such a new breed of microsecond-scale I/O de-

vices brings various challenges to the existing cloud

systems, which were originally designed to mitigate

millisecond-scale events. As a result, the mismatch

between the system design and the disaggregated ar-

chitecture leads to significant performance overhead,

and more details will be discussed in Subsection 3.1.

On the other hand, there is still a performance

gap when comparing the I/O interconnects with the

on-die interconnect, e.g., the peer-to-peer latency of

Ultra Path Interconnect (UPI)① is only 40 ns, more

than 10x shorter than using the most advanced I/O

interconnects, InfiniBand[8, 9]. Hence, when applica-

tions run on a disaggregated datacenter connected by

such emerging I/O interconnects, the hardware re-

sources are heterogeneous with asymmetric perfor-

mance. However, the conventional cloud software

stacks, including data structure, language runtime,

and operating system, are not aware of such a huge

performance gap, leading to unexpected performance

degradation and variation (Subsection 3.2).

At the same time, due to a lack of hardware sup-

port for cache coherency, inter-server synchronization

(via I/O interconnects) is much slower than intra-

server synchronization. For example, the atomic in-

structions, e.g., compare-and-exchange (CMPXCHG)

and fetch-and-add (FAA), provided by the x86 CPU

can finish around 6 nanoseconds–150 nanoseconds

within a monolithic server[10]. But the synchroniza-

tion between two disaggregated servers (connected by

InfiniBand) can reach up to 4 microseconds by using

a sequence of instructions[4], which is more than 20x

slower. As a result, in order to get reasonable perfor-

mance, the programmers have to partition the data

carefully to limit the overhead of inter-server synchro-

nization. The broader impacts of the costly synchro-

nization will be further discussed in Subsection 3.3.

Semantics-Aware System for Disaggregation. The

existing cloud system is built for monolithic servers

under general-purpose design principles. The whole

software stack, ranging from data structures, runtime

to the operating system, is oblivious to the diversity

of cloud applications and the characteristics of disag-

gregated architectures. As a result, the cloud system

leads to a semantics gap between high-level applica-

tions and low-level hardware. There are two main rea-

sons for this problem.

On the one hand, high-level programming lan-

guages (HHL) are widely used in the development of

cloud applications, e.g., Hadoop, Spark, Cassandra,

and Flink. The high-level languages provide a variety

of runtime supports to make programming easier, let-

ting the programmer focus on designing the program

logic instead of elaborating on resource management.

For example, most of the popular managed languages,

e.g., Java, Python, and Scala, provide the data ab-

stract of Object to enable an object-oriented program-

ming model and automatically reclaim the dead space

via the Garbage Collection (GC) mechanism to ease

memory management and improve memory safety.

However, applications need to pay performance tax

for these runtime supports, and the program seman-

tics are usually hidden from underlying systems. For

example, the GC mechanism can lead to a 3x larger

memory footprint[3]. As a result, when running on

memory disaggregated servers, such cloud applica-

tions with large working sets tend to cause excessive

accesses to the remote memory, degrading the perfor-

mance significantly[3, 4, 9, 11, 12].

On the other hand, the operating system is an ill

fit for managing disaggregated resources over the net-

work. First, OS (operating system) components as-

sume resources are local and communicate via shared

memory or fast IPCs, regardless of kernel types. This

mode, however, is infeasible over a slower network.

Second, a traditional OS fate-shares with its hard-

950 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

①Interconnect that moves data faster and smarter. https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/in-
terconnect.html, Sept. 2023.

https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html

ware. But in a disaggregated setting, failure is expect-

ed to be common. The OS must ensure a more flexi-

ble failure model. Finally, many OS mechanisms and

policies are designed for slow devices, and one promi-

nent example is that OS's decade-old paging subsys-

tem is tailored for millisecond-scale disks. However,

these mechanisms work poorly for microsecond de-

vices such as RDMA.

We will discuss the new challenges in Section 3,

and existing solutions in Section 4. Finally, we will

discuss the potential research trends of disaggregated

cloud systems in Section 5. To conclude, it is neces-

sary to reinvent the cloud software stack to bridge

the semantics-gap between cloud applications and dis-

aggregated architectures.

2 Rise of Resource Disaggregation

In order to meet the ever-increasing parallelism of

cloud applications, cloud providers proposed to build

the warehouse-scale datacenter. At the same time,

system developers build a series of distributed frame-

works, e.g., MapReduce[13], to achieve very high scal-

ing-out parallelism on the large-scale cluster. On the

other hand, a new concept of datacenter, i.e., the

computational Grid, is proposed to enable applica-

tions to scale up across multiple servers. The benefits

are twofold: 1) the application can dynamically scale

and acquire heterogeneous resources without consider-

ing the limitations of a single machine; 2) cloud

providers can build dedicated resource nodes (servers)

to reduce the complexity and cost of hardware.

2.1 Computational Grid

The computational Grid is a distributed frame-

work proposed in the mid-1990s, developed for re-

source sharing during scientific collaborations[14]. The

servers and scientific instruments are connected by

networks, and all the hardware resources are orga-

nized as different kinds of resource pools, e.g., com-

puting pool, memory pool, and storage pool. An ap-

plication can be divided into a bunch of subtasks and

scheduled to the appropriate servers. Different kinds

of subtasks benefit from either the large-scale re-

source or the heterogeneous hardware, e.g., accelera-

tors. Right now, the Grid② is still widely deployed in

different areas, e.g., financial service, entertainment,

and engineering.

Based on the computational Grid, Fan et al. pro-

posed a reconfigurable architecture, DSAG (Dynamic

Self-Organized Computer Architecture Based on Grid-

components)[15, 16] in the early 2000s to fulfill the

large-scale resource requirements of high-performance

computing. The key idea is to disaggregate the hard-

ware resources from an integrated monolithic server

and organize the same type of hardware resources in-

to a physical resource cluster (pool), as Fig.2 shows.

When deploying an application, the underlying archi-

tecture will be dynamically reconfigured according to

the program's characteristics. DSAG brings a new

trend to building large-scale datacenters. First, the

manufacturer can build dedicated architectures and

systems for each kind of resource clusters to achieve a

larger scale and higher management efficiency. For

X

CPU CPU CPU

X

Cache

Disk

DRAM
DRAM

DRAM

X

X
Disk

X

Accelerator Pool

DRAM Pool

CPU Pool
Storage Pool

Optical
Interconnect

GPU GPU

GPU GPU

Fig.2. Dynamic Self-Organized Computer Architecture Based on Grid-Components (DSAG)[15, 16]. Each type of hardware is physi-
cally organized as a resource pool. A high-performance computer can be dynamically built from the resource pools according to the
requirements of applications. The symbol X represents the optical switch.

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 951

②What is grid computing? https://aws.amazon.com/what-is/grid-computing, Sept. 2023.

https://aws.amazon.com/what-is/grid-computing
https://aws.amazon.com/what-is/grid-computing
https://aws.amazon.com/what-is/grid-computing
https://aws.amazon.com/what-is/grid-computing
https://aws.amazon.com/what-is/grid-computing

example, the memory cluster is equipped with dedi-

cated CPUs with fewer computing units and a larger

memory management unit to break the Memory

Wall[17]. Second, DSAG can provide specialized archi-

tectures for diverse applications with fine-grained re-

source provision via the ability of architecture recon-

figuration. In addition, DSAG provides an exclusive

and isolated hardware execution environment for ap-

plications to avoid the resource racing and conflicts of

the legacy multi-tenant usage scenarios. DSAG estab-

lishes the trend of hardware resource disaggregation.

2.2 Resource Disaggregation

Fig.3 demonstrates the bandwidth development of

different types of interconnects. With the unprece-

dented development of network technologies, the la-

tency and bandwidth of I/O interconnects are nar-

rowing the performance gap with the on-die intercon-

nect. As a result, the emerging I/O interconnects al-

low us to disaggregate the tightly coupled CPU and

memory resources and build the general-purpose dis-

aggregated datacenter to support ubiquitous cloud

computing workloads[1]. For example, the industry has

built several prototypes, such as HP's The Machine③,

Intel’s Rack-Scale Design④ and the Firebox[18] from

Berkeley. However, in order to make the disaggregat-

ed server more practical, some requirements should be

satisfied, from hardware features to the programming

model and OS design.

2.2.1 Architecture Features

Hardware components are reorganized and virtu-

alized as resource pools. The disaggregated datacen-

ter is built from separated monolithic servers, which

CPU

Bandwidth

Local I/O

Interconnect

SAN or IPC

(Clustering)

To the Edge of

the Datacenter

Pentium III MP
Xeon (8.5 Gb/s) PCI 64/66

(4.2 Gb/s) Fibre Channel
or IPC (4 Gb/s) 1GE (2 Gb/s)

Ethernet

Pentium 4
(25 Gb/s)

PCI-X
(8.5 Gb/s) Fibre Channel

or IPC (4 Gb/s)

PCIe 1.0
(32 Gb/s) InfiniBand SDR

(24 Gb/s)
InfiniBand SDR

(24 Gb/s)

Intel Harpertown
(102.4 Gb/s)

PCIe 2.0
(64 Gb/s)

InfiniBand QDR
(96 Gb/s)

InfiniBand QDR
(96 Gb/s)

Intel Skylake
1 152 Gb/s

PCIe 4.0
(256.0 Gb/s)

InfiniBand EDR
(300 Gb/s)

InfiniBand EDR
(300 Gb/s)

PCIe 5.0
(512 Gb/s)

InfiniBand HDR
(600 Gb/s)

InfiniBand HDR
(600 Gb/s) 2022

2017

2010

2007

2003

2000&2001

1999

1998

Intel Westmere EP
988.2 Gb/s

PCIe 3.0
(128 Gb/s)

Intel Icelake
1 024 Gb/s

100 Mb
Ethernet

Pentium II MP
Xeon (6.4 Gb/s) PCI 64/66

(4.2 Gb/s)
Fibre Channel

or IPC (2 Gb/s)

Fig.3. Development trend of I/O interconnects and on-die interconnects[19]. The data is collected and extended based on the white
paper of Mellanox Technologies[20].

952 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

③The machine: A new kind of computer. https://www.hpl.hp.com/research/systems-research/themachine, Sept. 2023.

④Intel rack scale design. https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.
html, Sept. 2023.

https://www.hpl.hp.com/research/systems-research/themachine
https://www.hpl.hp.com/research/systems-research/themachine
https://www.hpl.hp.com/research/systems-research/themachine
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html

are connected by the PCIe-based emerging I/O inter-

connects, as shown in Fig.4. For example, an applica-

tion can request CPU resources from the first server

and memory resources from three different servers.

During the execution, the application can also offload

the compute to where the data resides, e.g., the sec-

ond and third servers in Fig.4. The benefits are

twofold. First, PCIe has emerged as the dominant in-

terconnect technology and is widely adopted in the

server design. Hence, all the legacy servers support-

ing the compatible PCIe standards can be integrated

into the disaggregated datacenter, saving the cost of

the total redesign. Second, the PCIe technology can

provide good scalability with ultra-low latency. For

example, both CXL and InfiniBand are built atop the

PCIe bus. CXL can provide sub-microsecond-scale la-

tency in a rack-scale server[8], and InfiniBand sup-

ports around a few thousand connected servers with

microsecond-scale communication latency[21]. In addi-

tion, the I/O interconnects can add new features to

the transport layer, such as reliable connection and

hardware-support traffic congestion control. As a re-

sult, a single application can be equipped with thou-

sands of cores and petabyte-level memory, which is

far beyond the assumptions and expectations of the

existing resource management mechanisms and pro-

gramming models[22]. For example, the widely de-

ployed 4-level paging only supports up to 256 TB of

virtual address space and 64 TB of physical address

space. It is also impractical to expect programmers to

manage such huge memory resources in fine-grained.

Hence, how to manage such a large-scale server re-

mains a challenging problem.

Resource disaggregation simplifies the mainte-

nance of datacenter hardware and improves resource

management efficiency by virtualizing hardware com-

ponents as resource pools. First, the new hardware

components can be dynamically added to the re-

source pool without interrupting the execution of de-

ployed applications. Second, resource disaggregation

can cope well with the increasing hardware hetero-

geneity— all the domain-specific accelerators are ag-

gregated as different kinds of pools and are available

to the whole datacenter without considering their de-

ployed locations. However, resource disaggregation

complicates resource management by introducing

asymmetric performance to homogeneous hardware

resources. For example, each application can acquire

CPU, memory and accelerator resources from differ-

ent nodes and reorganize them as a virtualized server,

Application

Task #2Task #1 Task #4Task #3

Virtualized Server

CPU Resource Memory Resource Memory Resource

Core #1 Core #2 Core #1 Core #2 Core #1 Core #2

Cache Cache Cache

Local
Memory

Local
Memory

Local
Memory

I/O
Controller

I/O
Controller

I/O
Controller

ms-Scale Interconnect (e.g., InfiniBand)

ns-Scale
Interconnect

...

Fig.4. Rack-scale server built from monolithic servers which are connected via the ultra-low latency I/O interconnects. An applica-
tion can request resources from different servers and treat the acquired resources as a virtualized server under the management of a
single system image.

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 953

as shown in Fig.4. As a result, the memory resource

of an application may come from several different

servers and the performance, e.g., latency and band-

width, may vary significantly according to intercon-

nect topology. These new challenges may cause se-

vere performance degradation and extensive QoS vio-

lations to the existing cloud applications[23]. Hence, it

is necessary to extend the existing VM management

framework, e.g., Kubernetes (k8s), to be aware of the

performance variation of CPU and memory resources

during the allocation and migration. In other words,

resource disaggregation tends to shift the burden of

resource management from developers to cloud sys-

tems to exchange the scalability and efficiency of

hardware development. We will further discuss these

new challenges in Section 3.

2.2.2 Operating System (OS)

OS is the new firmware. The core functionality of

the disaggregated OS is to aggregate and virtualize

the disaggregated hardware components as central-

ized resource pools and provide standard POSIX in-

terfaces to upper-layer applications. In addition, the

disaggregated OS is also expected to provide strong

performance isolation and fault-tolerance to support

the multi-tenant nature of the disaggregated datacen-

ter.

By supporting the standard POSIX interfaces, the

legacy applications can run on a disaggregated data-

center unchanged while transparently reaping the

benefits such as higher resource utilization, indepen-

dent failure domains and so on. The key challenge to

building such a disaggregated OS is to seamlessly

group distributed resources used to be co-located in

close proximity. Among all, the most challenging part

is disaggregating memory from CPU with good per-

formance and management efficiency. Despite its sim-

ple abstraction and backward compatibility, stan-

dard SSI (single-system image) disaggregated OS has

non-trivial overheads due to its CPU-centric design[2].

Consequently, a series of OS prototypes are proposed

to improve the disaggregated memory resource man-

agement efficiency from the data-centric[24] and the

resource-centric[25] to the fabrics-centric design[26].

The datacenter is designed to be shared by di-

verse cloud applications. The disaggregated OS should

be responsible for providing performance isolation for

the co-running applications. For example, a bunch of

dedicated memory-disaggregation data planes are pro-

posed to mitigate the microsecond-scale latency via

prefetching[27], data migration[28] and compute offload-

ing[4, 12]. All these techniques rely on application se-

mantics monitoring and recognition. However, all

these co-running applications share the same I/O in-

terconnect, and the mixed memory access patterns

significantly reduce the aforementioned memory-dis-

aggregation management efficiency[3, 23]. Hence, it is

necessary to provide strong isolation on the memory-

disaggregation data plane and further enable the

adaptive management policies of the co-running appli-

cations. Besides, due to the far more complicated re-

source-sharing scenarios in a disaggregated datacen-

ter, the disaggregated OS is also expected to provide

robust execution environments[29].

2.2.3 Runtime System

Runtime is the key to bridging the semantics gap

between diverse applications and disaggregated archi-

tectures. As we mentioned above, resource disaggrega-

tion brings hardware resource heterogeneity to the

datacenter, and the disaggregated OS is only responsi-

ble for providing basic resource management mecha-

nisms. Due to lacking specialized optimizations for

disaggregated architectures, the system-level opti-

mizations are usually under-performed. Hence, on the

one hand, the system builders increasingly rely on the

application developers to pass more program seman-

tics down to the low-level systems to improve man-

agement efficiency, e.g., data prefetching and job

scheduling. Hence, a series of new programming ab-

stracts, e.g., user-level threads[30] and logical process-

es[31], are proposed to allow programmers to explicitly

elaborate the program for disaggregated hardware in

fine-grained.

However, on the other hand, application develop-

ers tend to use high-level programming languages,

e.g., Java, Python and Scala, which hide the compli-

cated resource management details from developers

and let them focus on designing the program logic.

Hence, it is not practical to expose these extensive

hardware features to the application developers and

shift all the optimization burden to them. In order to

fix the gap, a new trend is to design domain-specific

(language) runtime via the newly proposed program-

ming abstracts and mask out the hardware hetero-

geneity by only providing easy-to-use interfaces, e.g.,

single address space and automatic data reclamation

and migration, to the application developers. By fol-

954 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

lowing this philosophy, a series of resource-disaggrega-

tion-friendly data structures[32–35] and semantics-aware

cross-layer systems[3, 4, 9, 12, 36] are proposed.

2.2.4 Summary

The emerging network technologies bring opportu-

nities to build large-scale clusters and also introduce

challenges to the existing cloud software stacks.

3 New Challenges from Resource

Disaggregation

The existing cloud software stacks, e.g., operating

system, language runtime and programming abstracts,

are designed for the CPU-centric monolithic server.

On the one hand, the system-level optimizations for

the conventional hardware have been well exploited,

e.g., the kernel blocking layer relies on batching and

thread-level parallelism to mitigate the storage access-

ing latency and the compiler can reorder the instruc-

tions to take full advantage of the CPU's out-of-or-

der execution. On the other hand, the hardware is al-

so optimized to accelerate the execution of the pro-

gram, e.g., adding the TLB (Translation Lookaside

Buffer) to speed up the virtual address translation

and atomic instructions to simplify parallel program-

ming. That is to say, the existing cloud software stack

is tightly coupled with the characteristics of the con-

ventional architectures of the monolithic server.

However, the server paradigm-shifting to resource

disaggregation results in a mismatch between the ex-

isting software stack and the hardware features, lead-

ing to several new challenges to the cloud—significa-

nt performance degradation due to the microsecond-

scale latency, severe QoS violations due to the hetero-

geneity of disaggregated datacenter, and the costly in-

ter-server synchronization. In the following of this sec-

tion, we will take memory disaggregation as an exam-

ple to demonstrate the new challenges introduced to

cloud systems.

3.1 Lack of Microsecond-Scale Event

Mitigation Techniques

The emerging I/O interconnects introduce a new

type of latency, microsecond-scale, to the cloud, inval-

idating many existing system-level mechanisms and

optimizations. Taking memory disaggregation as an

example, when an application runs on a disaggregat-

ed server, its memory resources may come from sepa-

rated blades connected by microsecond-scale I/O in-

terconnects. The memory resources can be divided in-

to two types with huge latency differences—the nan-

osecond-scale local memory (residing with CPU) and

the microsecond-scale remote memory. The perfor-

mance gap is so huge, reaching up to approximately

10x to 100x[8, 9, 26], that none of the existing latency

mitigation techniques can be directly applied to

bridge the gap.

The existing hardware latency-mitigation tech-

niques lack parallelism to hide the microsecond-scale

latency. For example, the modern out-of-order CPU

utilizes the non-blocking cache[37–39] to issue multiple

outstanding memory requests to hide the nanosecond-

scale CPU stall caused by memory access. However,

due to the hardware limitations, e.g., chip area, cost,

and design complexity[40], the memory level paral-

lelism is limited to dozens and still a few orders of

magnitude less to hide the microsecond-scale latency.

frontswap

The existing software latency-mitigation tech-

niques are all designed for storage with millisecond-

scale latency. Applying them to the disaggregated

datacenter can even worsen the performance. Taking

the multi-threading as an example, the context-switch

overhead of the POSIX thread reaches up to hun-

dreds of nanoseconds[30] and can be longer if the

thread is scheduled to a new core, which can further

lead to data movement overhead in the cache hierar-

chy. Besides, inappropriate batching techniques can

only waste more CPU time, and state-of-the-art re-

mote memory data planes[23, 41] tend to utilize the

 interface⑤ to bypass the unnecessary block

layer optimizations. However, the software overhead

still accounts for approximately 60% of remote memo-

ry accessing latency[5].

3.2 Severe QoS Violations

Resource disaggregation further contributes to the

hardware heterogeneity of datacenters by introducing

asymmetric performance to the homogeneous re-

source. For example, memory performance and inter-

core communication overhead within an application

may vary significantly according to the I/O intercon-

nect topology[21]. As reported in previous research[42, 43],

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 955

⑤Transcendent memory in a nutshell. https://lwn.net/Articles/454795, Sept. 2023.

https://lwn.net/Articles/454795

the hardware heterogeneity in conventional monolith-

ic datacenters can slow down applications by up to 2x

and even lead to workload crashes due to resource ex-

haustion. The situation can be much worse in a disag-

gregated cluster. For example, when running on mem-

ory disaggregated servers, applications' performance

variation can reach up to 7x, with 400x longer 99th

percentile latency[5, 23]. The reasons are twofold. 1)

Each type of hardware resources is going more hetero-

geneous, exhibiting a huge performance gap. For ex-

ample, the bandwidth and the latency of local memo-

ry are more than an order of magnitude better than

remotely attached memory. As a result, applications'

performance varies significantly when acquiring differ-

ent kinds of memory resources. 2) Interference within

a disaggregated cluster can be more complicated.

Each application spans multiple resource servers, and

each resource server needs to serve many applications.

For example, an application can acquire hardware re-

sources from a single CPU server and several memo-

ry servers. As a result, the application will race re-

sources with all the other applications co-running on

the related servers, leading to an unpredictable per-

formance variation[23, 44].

3.3 Costly Inter-Server Synchronization

In order to satisfy the increasing parallelism of ap-

plications, the scale of computers keeps growing, e.g.,

from the symmetric multiprocessor (SMP) server to

the Non-Uniform Memory Access (NUMA) system,

and further shifting to the rack-scale and warehouse-

scale clusters. As a result, each application crosses

multiple cores with complicated interconnection topol-

ogy, and the data synchronization overhead leads to

non-trivial performance impact[45]. For traditional

monolithic servers, manufacturers tend to provide

hardware support for the data synchronization be-

tween different cores, such as the atomic instructions

and the hardware-support snooping for cache coheren-

cy. Hence, the data synchronization overhead of SMP

and NUMA systems is within the nanosecond scale.

However, it is very challenging to provide cache co-

herency in a rack-scale cluster with thousands of

cores. Although previous research, e.g., Multicube[46],

FLASH[47], has explored the possibility of building a

cache-coherent large-scale server, there is still a lack

of commodity products today. Hence, we assume that

the software is responsible for maintaining the data

consistency between disaggregated blades[2, 4]. As a re-

sult, due to hardware limitations, the inter-server

communication overhead is orders of magnitude high-

er than the intra-server communication.

As shown in Fig.5, an application with three par-

allel tasks executes on a monolithic NUMA machine

with hardware-support cache coherency, e.g.,

MESIF[48]. All three tasks are trying to modify the

same variable, e.g., application threads and concur-

rent GC threads race for the same object. For task

#1 and task #2, residing in the same SMP processor

and sharing the same L3 cache, the synchronization

overhead is around 20 nanoseconds to 30 nanosec-

Task #1

Core #1

I/
O

C
o
n
tr

o
ll
e
r

I/
O

C
o
n
tr

o
ll
e
r

Local

Memory

Local

Memory

NUMA

Socket #1

NUMA

Socket #2

A Multithreaded Application

Task #3Task #2

Core #2 Core #1 Core #2

Cache Cache

QPI/UPI

Fig.5. Multithreaded application executing on a NUMA server equipped with Intel Xeon processors. The Xeon processor provides
atomic instructions and the snooping cache to ease the parallel programming.

956 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

µs

onds under the implementation with atomic instruc-

tions. And for the two tasks (e.g., task #1 and task

#3) residing in different NUMA processors, the data

synchronization overhead can also be still limited

within the nanosecond scale, around 100 nanoseconds

to 150 nanoseconds[10]. However, if an application

runs on a disaggregated cluster, its two threads exe-

cute on two separated resource servers connected by

the emerging I/O interconnects (e.g., InfiniBand), as

shown in Fig.6. Because of the lack of hardware-sup-

port cache coherency, inter-server communication is

usually implemented via message passing or RPC

(Remote Procedure Call), reaching up to 2.3 [24, 49],

more than 10x slower than the intra-server data syn-

chronization.

4 Semantics-Aware Software Stack

There are two major trends in cloud computing.

First, cloud applications are becoming increasingly di-

verse. Up to 81% of businesses are already using cloud

technology in one capacity or another[50]. The applica-

tions span a large number of domains, including ma-

chine learning, the Internet of Things, big data pro-

cessing, databases, etc., with dramatically different

compute behaviors and memory usage patterns. Sec-

ond, the hardware heterogeneity starts dominating

the architecture development due to the largely end-

ing of Moore's Law[51, 52]. Resource disaggregation fur-

ther promotes the trend by introducing resource pool-

ing and complicated I/O topology, as discussed in

Section 2. As a result, a growing semantics gap be-

gins between the diverse cloud applications and the

heterogeneous datacenter hardware, leading to severe

performance degradation and frequent Service-Level

Agreement (SLA) violations. Hence, it is necessary to

build cross-layer software stacks to align the comput-

ing behaviors of high-level applications and the char-

acteristics of emerging hardware with program seman-

tics.

In this section, we will first talk about the major

reasons leading to the program semantics gap (Sub-

section 4.1), and then demonstrate the architecture of

the semantics-aware software stack (Subsection 4.2)

and the represented methods to bridge the gap. Both

the industry and academia have made numerous pro-

posals to bridge the semantics gap by building new

software stacks from operating systems and abstrac-

tions to programming models. We categorize the ex-

ploration canvas into three layers: operating system

(Subsection 4.3), runtime (Subsection 4.4) and pro-

gramming interface (Subsection 4.5). This section is

by no means a complete survey of all related work.

We aim to describe the existing research landscape,

how it evolved, and where it is heading.

4.1 Semantics Gap

The high-level programming languages (HHL)

provide a variety of runtime supports, e.g., object-ori-

ented programming (OOP) model, Garbage Collec-

tion (GC), Just-In-Time (JIT) compiler, to increase

Task #1

Core #1

I/
O

C
o
n
tr

o
ll
e
r

I/
O

C
o
n
tr

o
ll
e
r

Local

Memory

Local

Memory

A Multithreaded Application

Task #2

Core #2 Core #1 Core #2

Cache Cache
InfiniBand

CPU Server Memory Server

Fig.6. Multithreaded application executing on a disaggregated server connected via InfiniBand. Task #1 and task #2 are racing for
the same data and the software is responsible for maintaining the inter-server data consistency.

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 957

the development productivity. As a result, developers

focus on designing the algorithms instead of manag-

ing the resource usage or adapting the program to

low-level hardware. Hence, applications rely on the

software stack, e.g., runtime and OS, to monitor and

recognize the application's computing behaviors and

optimize the performance, e.g., data layout adjust-

ment and task scheduling, for the underlying hard-

ware. However, on the one hand, the existing cloud

software stacks fail to recognize applications' diverse

computing behaviors due to the hierarchical design,

resulting in the inefficiency of the optimization strate-

gies. On the other hand, the existing software stacks

are designed for the legacy hardware, e.g., slow disks

and Ethernet, leading to a mismatch with the emerg-

ing I/O interconnects. As a result, the disaggregated

hardware components are under-performed. The de-

tails of the major reasons are elaborated below.

Data Abstraction Mismatch Between Software
Stack Layers. First, each stack layer has unique mech-

anisms and data abstractions for specialized function-

ality. The lack of cross-layer co-design prevents appli-

cation semantics from passing down to the underly-

ing hardware. For example, as Fig.7 shows, there are

at least three stack layers between the Apache Spark

application and hardware—the distributed framework

(Apache Spark[53]), Runtime (OpenJDK⑥) and Oper-

ating System (OS). Spark proposes a distributed da-

ta abstraction, Resilient Distributed Dataset (RDD),

to ease parallel programming and improve the fault

tolerance of distributed computing. Runtime relies on

the object-oriented programming model to enable au-

tomatic memory management, e.g., Garbage Collec-

tion. At the same time, OS manages data via the vir-

tual address mechanism to provide isolation, portabil-

ity and the ability of defragmentation. As a result,

even programmers interact with RDDs via simple op-

erations, e.g., word-count (scanning the data in se-

quence). The simple and clear memory patterns can-

not be passed down to the OS layer from the Spark

framework layer. This is because of the data abstrac-

tion mismatch between stack layers—each RDD con-

tains thousands of objects distributed in discrete OS

pages. From the perspective of OS, the program

shows random memory patterns resulting in a series

of problems, e.g., poor spatial locality and inefficient

prefetching, resulting in significant performance

degradation and variation[11, 23, 54].

Interference Between Semantics-Agnostic Tasks.
Second, the applications written in high-level lan-

guages run with various concurrent service threads

(tasks), e.g., GC threads, JIT compilation threads,

with different compute behaviors. Hence, when these

semantics-agnostic threads co-run on the same server,

all the different semantics are mixed and cannot be

distinguished by the underlying systems, leading to

inefficient management policies. As Fig.8 demon-

strates, even if application threads have a clear se-

quential memory access pattern, it cannot be recog-

nized by the underlying OS because of the interfer-

ence with the co-running GC threads. Compared

with disabling the GC threads, the prefetching effi-

RDD
Spark Framework

Managed Runtime

Operating System

Object

Page

Fig.7. Data abstraction mismatch between different cloud soft-
ware stacks.

0 64 128 192

30

27

24

21

18

15
256 320 384 448 512

Page Fault Sequence

F
a
u
lt
y
 P

a
g
e
 I

n
d
e
x
 (

1
0

3
)

(a)

F
a
u
lt
y
 P

a
g
e
 I

n
d
e
x
 (

1
0

3
)

0 64 128 192 256 320 384 448 512

Page Fault Sequence

(b)

30

25

20

15

10

5

0

Fig.8. The memory access patterns of the application cannot
be passed down to the underlying OS due to the interference
between application threads and GC threads[3]. (a) Page fault
trace of Spark application. (b) Page fault trace of Spark appli-
cation with concurrent GC.

958 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

⑥An open-source implementation of the Java platform. https://openjdk.org, Sept. 2023.

https://openjdk.org

ciency is reduced by 40%. Because these service

threads are crucial to providing vital functions, it is

not practical to disable them directly[3].

Lack of Software Support for the Emerging I/O
Interconnects. The existing resource management

mechanisms and optimizations of the disaggregated

datacenter are usually under-performed and even lead

to SLA violations and correctness problems, e.g., da-

ta inconsistency problems, due to the aforementioned

new system-level challenges introduced by the emerg-

ing I/O interconnects (Section 3). For example, the

existing OS cannot be aware of the I/O topology of

the disaggregated resources and usually fails to sched-

ule the compute-intensive and memory-intensive tasks

to the proper hardware components. That is to say,

the application semantics cannot be fully utilized even

if they are successfully passed down to the low-level

system. Hence, a redesigned OS equipped with the

new programming abstractions, e.g., disaggregated

process, and disaggregated resource managements are

the basis of the cloud software stacks.

4.2 Design Overview

In order to bridge the semantics gap, we propose

the semantics-aware software stack that conveys the

diverse application information to the heterogeneous

hardware to improve management efficiency and re-

duce interference by aligning application behaviors.

As Fig.9 demonstrates, the semantics-aware software

stack contains three basic layers—programming inter-

face, runtime, and operating system. Developers de-

fine the behaviors of the runtime layer by providing

explicit program semantics via programming inter-

faces. The runtime layer requests resources from the

operating system and is in charge of task scheduling

and data migration. The operating system provides

hardware virtualization, basic resource management,

and necessary fault-tolerance mechanisms.

The programming interface aims to balance the

programming productivity with necessary semantics

provision. For example, providing a disaggregated

type system to let system developers explicitly decide

the location of fine-grained variables among the disag-

gregated memory resources with asymmetric perfor-

mance can significantly improve the data locality and

concurrency safety (Subsection 5.2). However, it is al-

so essential to provide predefined disaggregated data

structures, tailored for disaggregated memory, to im-

prove the productivity of application developers with

providing fair performance (Subsection 4.5).

Runtime is responsible for providing good perfor-

mance. Through utilizing the acquired program se-

mantics, runtime needs to adjust the data layout to

Semantics-Aware Software Stack

Programming Interface

Type System Synchronization

Predefined Data Structure

Resource Manager

Fault-Tolerance Module

Runtime

Process/Thread Model

Compiler Support

Operating System

Device Monitor

Resource Manager

Functionality

User-Defined Semantics

Data Locality Thread Affinity

Data Ownership

Program Semantics

Semantics-Aware Management

Task Scheduling

Data Migration

Resource Scaling

Hardware Resources

Disaggregated Resources

Device Virtualization

Resource Allocation & Isolation

Fault Recovery

Fig.9. Architecture of the semantics-aware software stack.

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 959

mitigate the microsecond-scale latency and schedule

different tasks to appropriate disaggregated servers to

improve the CPU and memory efficiency. One step

further, the disaggregated runtime also proposes a se-

ries of process, thread and data models to improve

the efficiency of disaggregated hardware (Subsection

4.4), such as the user-level thread, Shenango[30], which

can provide ultra-high parallelism with fast context

switch, and the new process model, Nu[31], which sup-

ports microsecond-scale migration. Runtime is the key

to bridging the semantics gap between upper-level di-

verse applications and low-level heterogeneous archi-

tectures.

The operating system provides basic management

modules to cope with the paradigm-shifting of the

datacenter hardware. As the hardware components

are disaggregated, the kernel is also split to manage

the resources and provides communication primitives

between disaggregated nodes[2, 55]. However, the oper-

ating system should largely leave the fine-grained re-

source management to the runtime and only needs to

provide different types and quantities of resources ac-

cording to runtime needs. In addition, due to the mul-

ti-tenant nature of cloud computing, the operating

system also needs to provide device virtualization and

performance isolation among co-running applications

(refer to Subsection 4.3 for more details).

4.3 Disaggregated Operating System

An OS designed for the disaggregated datacenter

will manage a sea of disaggregated hardware re-

sources and expose a single-system image (SSI) to us-

er-level programs. Crucially, it would maintain back-

ward-compatible APIs for user-level programs to reap

the benefits of resource disaggregation with no or mi-

nor changes.

The disaggregated OS approach is a unique de-

sign point within the exploration canvas for using dis-

aggregated resources. It was among the initial system-

atic studies on leveraging disaggregated resources

since Lim et al.[22] first proposed memory disaggrega-

tion. Two generations of the disaggregated OS have

emerged: a CPU-centric one called LegoOS[2] and a

data-centric one called FractOS[24]. This evolution

happens in a short 5-year span, reflecting the design

philosophy of a disaggregated OS changes as the

workloads it hosts shift: the best cost-efficiency is

achieved when we co-design the OS and the work-

loads at the sacrifice of flexibility and generality. We

will now briefly discuss two pioneer studies in this

space.

CPU-Centric Disaggregated OS. LegoOS[2] is the

first-generation, CPU-centric disaggregated OS. It of-

fers a set of Linux-compatible system calls and can

run unmodified Linux binaries (such as TensorFlow)

over a disaggregated infrastructure. LegoOS em-

braces the CPU-centric model. All the orchestration

of data must go through the CPU. In order to expose

an SSI abstraction, LegoOS proposes to run a moni-

tor on each disaggregated device, and each monitor is

highly customized to the device it runs on. For exam-

ple, the monitor on a CPU device is only responsible

for task execution, while the monitor on a memory

device is responsible for virtual memory handling. OS

functionalities are cleanly distributed among heteroge-

neous devices. LegoOS proposes a two-level resource

management scheme in which a global layer oversees

cluster-wide resource allocations, and each monitor

handles device-local allocations. Despite its simple

and backward-compatible APIs, LegoOS incurs non-

trivial performance overheads (25% for a typical ap-

plication) mainly because 1) both the memory access

latency and bandwidth are worse in the disaggregat-

ed setting compared to the monolithic setting, and

2) the CPU-centric model leads to unnecessary data

copies among CPU devices and other devices. In or-

der to mitigate these issues, the second generation

was proposed.

Data-Centric Disaggregated OS. FractOS[24], as

the second-generation disaggregated OS, eschews the

CPU-centric model and embraces a data-centric one.

Instead of exposing a traditional POSIX abstraction,

FractOS expects a program written in a DAG fash-

ion, with each vertex representing a particular opera-

tor running on a specific disaggregated device and

each edge representing how the data flows. Similar to

LegoOS, FractOS runs a monitor on each device.

FractOS will execute the DAG based on its descrip-

tion. A unique challenge in building FractOS is ensur-

ing security and isolation. FractOS leverages dis-

tributed capability to solve this issue. However, the

downside of using FractOS is that programmers need

to rewrite legacy applications and adopt FractOS's

DAG-based programming model.

Fundamentally, the design philosophy of a disag-

gregated OS is not different than that of a classical

single-node OS. There is a constant tension between

achieving the best performance and offering good gen-

erality. LegoOS aims for universal generality with

non-trivial overheads, in contrast to FractOS, which

co-designs with data systems for the best perfor-

960 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

mance. Going forward, we expect more customized so-

lutions will emerge for the best cost-efficiency, and we

believe it is likely a co-design of applications, OS, and

the underlying hardware.

4.4 Disaggregated Runtime

The major philosophy of runtime solutions is to

improve the system efficiency by exploiting the pro-

gram semantics and hide the heterogeneity of disag-

gregated hardware from application developers[9, 11, 12].

Hence, first, the disaggregated runtime should be co-

designed with the underlying disaggregated OS to en-

able the program semantics recognition and passing

down to the low-level software stacks to improve the

efficiency of system-level optimizations; second, the

runtime also needs to provide disaggregated program-

ming abstracts to ease the high-level cloud applica-

tion developments.

4.4.1 Disaggregated Abstractions Targeted at

the Killer Microseconds

µ

In order to fully take advantage of the emerging

hardware, the researchers from Berkeley[56], MIT[9, 30, 31]

and VMWare[12] proposed several new programming

abstractions, e.g., Shenango (user-level thread)[30], Nu

(disaggregated process)[31], AIFM (disaggregated

APIs)[9] and Kona (hardware-support disaggregated

primitives)[12], to let developers build disaggregated

applications from scratch. All these system abstrac-

tions target the new challenges discussed in Section 3,

e.g., mitigating microsecond-scale events and provid-

ing microsecond-scale task migration between differ-

ent servers. For example, Shenango is a new type of

user-level thread, similar to the green thread and

coroutine, optimized for fast context switch. Shenan-

go supports CPU reallocation every 5 s, orders of

magnitude faster than conventional POSIX thread

(PThread). Hence, compared with PThread-based ap-

plications, Shenango-based applications have much

higher thread-level parallelism. On the one hand,

when triggering a microsecond-scale remote memory

access, the lightweight Shenango thread can yield the

CPU resources to other ready Shenango threads to

improve CPU efficiency. On the other hand, Shenan-

go-based applications can issue many more in-the-fly

remote memory access requests to saturate the avail-

able RDMA bandwidth to improve the memory-level

parallelism further.

Other abstractions also provide novel functions

based on the emerging I/O interconnects: Nu[31] pro-

poses a new disaggregated process model, which di-

vides the process into dozens of prolects, and allows

the prolect to be migrated between different nodes of

a rack-scale server within 100 μs; Kona[12] allows the

user to fetch data from memory servers in fine-

grained granularity, i.e., cache line, to eliminate the

read/write amplification caused by the existing swap

system.

Developers can rebuild the applications for the

disaggregated datacenter with these newly proposed

hardware-specific abstractions to enjoy the benefits of

resource disaggregation. However, such clean-slate so-

lutions cannot support the existing applications. De-

velopers also need to make great efforts to elaborate

their programs to achieve reasonable performance. Al-

though rebuilding every program is infeasible for both

industrial and academic developers relying on count-

less open-source libraries and software, we believe

that these new prototypes and abstractions have the

potential to reshape cloud systems in the future.

4.4.2 Semantics-Aware Runtime Improving the

Efficiency of System Management

The disaggregated runtime is responsible for moni-

toring program semantics and guiding the behaviors

of low-level system policies. Hence, semantics aware-

ness started becoming the design principle of modern

disaggregated runtime—horizontally, the runtime shou-

ld recognize and isolate the semantics of different

tasks to avoid interference; vertically, the cross-layer

design enables the semantics propagation from user

layers to the underlying kernel and virtualization lay-

er.

Horizontally, Semeru[4] separates the application

threads and GC threads, and schedules them to the

CPU servers with powerful computing resources and

the memory servers where the data resides corre-

spondingly. The benefits are twofold. First, Semeru

reduces the interference of semantics-agnostic threads.

Second, the GC threads can run concurrently and

continuously in the memory servers without inter-

rupting and racing resources with application threads.

And then they proposed a new concurrent GC algo-

rithm, Mako[36], to further exploit the concurrency of

GC threads running on the memory servers. For the

tasks running on the CPU server, MemLiner[3] is pro-

posed as a way to reconcile the memory footprint of

application threads and service threads, e.g., object

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 961

tracing. After the above optimizations, the semantics

of applications can be passed down to the underlying

system stacks, which significantly improves the effi-

ciency of existing management policies, e.g., the cov-

erage and accuracy of OS prefetching[27] are improved

by 50% and 70%, respectively. Besides, these opti-

mization can reduce the memory footprint of cloud

applications, which leads to 56% less costly remote

memory access.

Vertically, application-integrated far memory

(AIFM)[9] designs semantics-aware prefetcher, evacua-

tor and frequently used data structures, e.g., hash ta-

ble, based on the Shenango threads. With the help of

program semantics, the efficiency of system-level

mechanisms is significantly improved. For example,

AIFM prefetcher can accurately fetch data at fine-

grained granularity, i.e., object, which eliminates the

read/write amplification of paging-based far-memory

data path, e.g., Fastswap, and improves throughput

via extremely high thread-level parallelism of user-lev-

el threads.

Similarly, Panthera[11] matches the distributed da-

ta structures with the runtime objects and the low-

level OS pages to improve the data layout on hybrid

memory. Panthera allows users or compilers to tag

properties, e.g., hot, cold or fault-tolerant, on differ-

ent data structures. And then Panthera utilizes the

GC to automatically and transparently propagate the

semantics to the related objects and then compact the

discrete objects into contiguous pages according to

the preference of users. As a result, the computing be-

haviors and memory access patterns on the distribut-

ed data structures can be clearly recognized by the

underlying OS and hardware, which significantly im-

proves the efficiency of low-level optimizations, such

as data prefetching and data layout adjustment. In

order to bridge the semantics gap, a series of new

hardware prototypes are also proposed, such as the

Programmable Architecture for Resourcing-on-De-

mand (PARD)[57] and HoPP[28].

In addition, the disaggregated runtime provides

the same programming interfaces with the monolithic

programming model, e.g., single address space and ob-

ject-oriented programming. As a result, the burden

shifts from application developers to system develop-

ers and all the existing managed applications can ben-

efit from these systems transparently.

4.5 Disaggregated Programming Interface

Data structures are fundamental building blocks

of many cloud applications, e.g., databases, key-value

stores, and file systems, used for organizing, storing,

and retrieving data. Conventional data structures are

originally designed for and used in local memory,

which, however, become inefficient in disaggregated

memory (DM) systems. This is mainly due to the

challenges discussed in Section 3, such as the big per-

formance gap between the local memory with

nanosecond-scale latency and the disaggregated mem-

ory with microsecond-scale latency. Researchers from

both industry and academia started reinventing data

structures that are aware of the characteristics of dis-

aggregated memory. These DM-aware data

structures[32–35, 58–61] have much better spatial locality

and support task offloading to mitigate the aforemen-

tioned microsecond-scale events. In this subsection,

we present the general design guidelines via several

critical data structures, e.g., hash table, tree, and

learned index, which are widely used in cloud applica-

tions.

4.5.1 Hash Table

Hash tables are popular data structures that are
widely used to develop latency-critical applications
and provide fast lookup services in distributed memo-
ry systems, such as the Memcached⑦ and Redis⑧.
However, due to a lack of consideration of the charac-
teristics of the disaggregated resources, e.g., the asym-
metric performance of the memory resource (Subsec-
tion 3.3), the applications exhibit significant perfor-
mance degradation and variation, causing excessive
QoS violations (Subsection 3.2).

Zuo et al.[35] proposed RACE, a disaggregated
hash table with three new techniques to address the
challenges. First, RACE introduces a concurrent lock-
free remote access mechanism to hide the microsec-
ond-scale latency by increasing the memory paral-
lelism. Second, in order to reduce the QoS violations,
RACE presents a one-side RDMA-conscious hash ta-
ble structure that achieves constant worst-case RD-
MA access times for all operations, including search,
insert, delete, and update. Finally, RACE leverages a
client-side directory cache to reduce the remote ac-
cess to the directory of the hash table and designs
three rules for detecting and resolving the cache in-

962 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

⑦A memory object caching system. http://memcached.org, Sept. 2023.

⑧An in-memory data store. https://redis.io, Sept. 2023.

http://memcached.org
https://redis.io

consistency cases. Based on RACE[35], Shen et al.[32]

designed a fully memory-disaggregated key-value

store called FUSEE. FUSEE guarantees the data con-

sistency of multiple hash table replicas stored in the

disaggregated memory and is able to tolerate both

client and server failures.

4.5.2 Tree

Computing on tree data structures tends to exhib-

it pointer-chasing style irregular memory access pat-

terns that rely on the accessed data to determine the

following memory accesses. Compared with other ap-

plications, tree-based applications are more memory

latency sensitive and perform much worse when run-

ning on the memory disaggregated servers. Based on

these semantics, it is necessary to design DM-aware

tree data structures to achieve reasonable perfor-

mance.

Ziegler et al.[58] proposed the first tree index FG

that purely employs one-sided RDMA verbs. FG is

built on a B-link tree structure (a variant of the B+-

tree) to support disaggregated memory. Wang et al.[59]

proposed a write-optimized B+tree Sherman to

achieve higher performance on disaggregated memory.

Sherman combines the local lock table and global on-

chip lock table to reduce the overhead of concurrent

accesses and presents a two-level version mechanism

to reduce the remote write amplification. Luo et al.[34]

proposed that the Radix tree is a more suitable tree

index for disaggregated memory than the B+ tree

since it has less remote read and write amplifications.

They presented the first Radix tree designed for dis-

aggregated memory called SMART. SMART lever-

ages lock-free internal nodes and lock-based leaf nodes

to reduce the lock overhead, a read-delegation and

write-combining mechanism to improve the overall

throughput, and a reverse check method to validate

the cache consistency.

4.5.3 Learned Index

Learned indexes[60, 61] are a new type of indexes

that leverage machine learning methods to learn the

cumulative distribution function of the sorted keys.

Due to the small model size, learned indexes have

much lower memory space overhead and higher per-

formance than tree indexes. Several scalable learned

indexes are proposed for the disaggregated memory

system, e.g., XStore[60], ROLEX[33]. However, ma-

chine learning models are only good at static work-

loads, such as read and scan. The dynamical work-

loads, e.g., insert and delete, keep changing the data

structure, which leads to the need to retrain the ML

models. In order to address this challenge, XStore

proposes a hybrid path that leverages the tree index

for dynamical workloads and the learned index for

static workloads. ROLEX proposes to decouple the

retraining of learned models from the dynamic opera-

tions. By doing so, model retraining can be pushed

down to the memory pool and executed asyn-

chronously. The insertion operations are executed in

the compute nodes via pure one-sided RDMA verbs,

delivering high performance and scalability.

5 Open Problems

The high demand for memory capacity and the

urgent need to improve resource utilization motivate

the explosive development of resource disaggregation

technologies. As new I/O interconnects are being in-

troduced to the market[8], system developers need to

pay more attention to the new features and reinvent

the system-level mechanisms and optimizations. In

this section, we will discuss the new research trends in

the cloud system.

5.1 Hardware for Disaggregation

Hardware evolution is the driving force behind the

redesign of cloud software stacks. Crucially, the fast

datacenter network plays a key role in making disag-

gregation a reality since resources used to be accessed

within a single chassis via high-speed PCIe intercon-

nect are now accessed through emerging datacenter

networking with comparable performance. Akin to the

OS design philosophy shift, monolithic servers no

longer fit as the building blocks of a disaggregated

datacenter. In response, customized devices tailored

for disaggregated datacenters have been proposed. In

this subsection, we will review notable studies related

to networks and disaggregated devices.

5.1.1 Datacenter Networking

The Compute Express Link (CXL)[6] is an emerg-

ing interconnect technology for memory disaggrega-

tion. It offers sub-microsecond-level access latency for

rack-scale memory, akin to accessing memory on a

neighboring NUMA node. Accessing disaggregated

memory via CXL is much faster than canonical net-

working technologies such as Ethernet. Essentially,

CXL shortens the software path from where applica-

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 963

tions access memory via load/store instructions (or

explicit APIs) to where the network requests are

transmitted. CXL achieves so by claiming a segment

of PCIe bus addresses and hardening the translation

from local application semantics (e.g., load/store or

explicit APIs) to network requests (e.g., PCIe pack-

ets)[6].

Aquila[62] is a recent work that revisits the decade-

old datacenter networking infrastructure and calls for

a tightly-coupled one tailored for resource disaggrega-

tion. Aquila proposes to break the strict boundaries

among layered network protocols and co-design the

transport layer and link layer for the best tail latency.

It also proposes to use a Dragonfly topology to group

heterogeneous disaggregated resources in close prox-

imity instead of using a traditional multi-tier Clos

topology. Aquila offers many insights on how a disag-

gregated datacenter can be deployed at a large scale.

A key challenge in using these emerging I/O inter-

connects is that the asymmetric performance of the

memory resource complicates the system design (Sub-

section 3.2). Take memory disaggregation as an exam-

ple. The CXL-attached memory exhibits approxi-

mately 3x to 5x larger latency than the local memory

in a rack-scale server[8] which limits the scalability of

building larger-scale clusters due to the increasingly

complicated networking topology. System developers

need to carefully partition and migrate data among

the disaggregated servers to achieve reasonable perfor-

mance. The complicated design of the existing cloud

software stacks keeps weakening the predictability,

stability and security of the cloud[63]. Hence, how to

reduce the disorders and improve the efficiency of the

cloud via software-hardware co-design stays a chal-

lenging problem.

5.1.2 Disaggregated Devices

Since the monolithic server is an ill-fit for build-

ing disaggregated datacenters, many researchers have

proposed customized devices. Notably, Clio[64],

Farview[65], and StRoM[66] are FPGA-based disaggre-

gated memory devices. By design, they have no beefy

CPUs attached and only adopt a wimpy CPU for

control and management. Their data path is cus-

tomized for remote data access. They usually support

offloading user-defined operators onto the devices to

achieve near-data processing. For instance, StRoM[66]

has a remote pointer-chasing API, Clio offers remote

KV semantics, and Farview can run database opera-

tors. As the disaggregation architecture matures, we

expect more customized devices to emerge and flour-

ish in areas like disaggregated storage and computing

devices.

These heterogeneous devices are highly special-

ized and can only speed up limited domain-specific

tasks. If the underlying systems cannot correctly rec-

ognize the behaviors of different computing tasks and

schedule them to proper devices, these applications

will be under-performed and pay heterogeneity tax.

However, the ability of software-based program ana-

lytics is limited, and the system developers expect

emerging devices to provide more hardware support

for program instrumentation and monitoring.

5.2 Programming Language for

Disaggregation

Designing disaggregated programming models

with proper runtime support and letting the system

developers build semantic-aware systems from scratch

can reduce the performance overhead and potentially

eliminate the data inconsistency introduced by the

disaggregated architecture. As we discussed in Sec-

tion 3, when running on a memory disaggregated dat-

acenter, the performance overhead mainly comes from

the inter-server data movement and thread-level syn-

chronization. Hence, we think that the disaggregated

programming language should have the ability to ex-

press the correlations between 1) data and data, 2)

thread and data, 3) thread and thread, which can

help the runtime system precisely and efficiently rec-

ognize the application's compute and data accessing

behaviors. And then, this information can be utilized

to improve the effectiveness of system-level manage-

ment mechanisms, e.g., thread scheduling and data

migration.

5.2.1 Data Management

Although there are a series of data management

research, e.g., prefetching techniques[9, 27, 67], data

eviction mechanisms[5, 41] and data layout adjustment

optimizations[11, 68, 69], how to mitigate the microsec-

ond-scale inter-server data accessing latency stays one

of the most challenging problems in the disaggregat-

ed datacenter[7]. For example, in order to address the

inaccuracy and data amplification problem of the pag-

ing-based remote memory management[20, 41], AIFM[9]

launches dozens of threads to periodically scan and

categorize the data in fine-grained object granularity.

These online profiling threads consume and race sig-

nificant CPU resources with application threads,

which in turn degrades the application's performance.

964 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

Hence, such a solution only shifts the space racing

problem, e.g., hot data vs cold data, to another CPU

resource racing problem, i.e., application threads vs

profiling threads. There is no panacea for the chal-

lenge of data management in a heterogeneous memo-

ry system.

However, with the guidance of programming

hints, the relationship between different objects can

be quickly identified with low overhead. The benefits

are twofold: first, the correlated objects can be moved

between disaggregated servers in batches, reducing

the data migration overhead; second, the data access

patterns can be recognized via the static program

analysis, e.g., during the compilation, which can be

used to precisely prefetch the useful data to hide the

microsecond-scale latency. Hence, we believe it is rea-

sonable and profitable to extend the type system or

annotation system of the programming language to

the disaggregated architectures.

5.2.2 Thread Synchronization

As we discussed in Subsection 4.1, in order to ful-

fill the increasing requirements of users and develop-

ers, the cloud applications are equipped with more

and more threads (tasks). For example, a database

application, Cassandra⑨, contains over 100 separate

tasks, including persistent tasks, networking service

tasks, garbage collection (GC) tasks, caching tasks,

etc. These concurrent tasks are usually semantics-ag-

nostic and tend to cause various performance bottle-

necks due to resource racing and lock contention.

Making things more challenging, the existing trend is

to increase the thread-level parallelism to hide the mi-

crosecond-scale latency that widely exists in the dis-

aggregated cluster[9, 30]. Hence, letting developers de-

fine the thread synchronization via message passing to

improve the task scheduling efficiency is becoming

necessary, although such a design may incur non-neg-

ligible programming efforts to developers and commu-

nication overhead between threads.

In addition, we can utilize the ownership⑩ to ex-

plicitly define the correlation between data and

threads during the execution and help multi-threaded

applications to guarantee data consistency when run-

ning on disaggregated servers. There are some pio-

neering studies targeting reducing the thread locking

and data racing by carefully orchestrating the paral-

lel threads, such as Singularity[70] and MemLiner[3].

However, balancing the expressiveness and program-

ming efforts of a language remains a challenging and

open problem.

5.3 Other Important Problems

Fault-Tolerance. Although memory disaggrega-

tion improves resource utilization by allowing applica-

tions to request resources across multiple servers, this

paradigm weakens the robustness of the memory sys-

tem. Compared to the monolithic cluster, each memo-

ry server in the disaggregated cluster can be shared

by more applications. Hence, a memory server failure

can potentially have a much wider impact on the

cloud. Some fault-tolerance mechanisms have been

proposed recently to help the applications recover

from a memory sever failure, e.g., Carbink[29] and Hy-

dra[71]. However, these erasure-coding based solutions

lead to nontrivial performance and space overhead.

For example, limited by the erasure-coding calcula-

tion, Carbink only supports data swapping in and out

at span (several pages) granularity, resulting in signif-

icantly read/write amplification[12]. Besides, the space

overhead can reach up to 35%, which almost cancels

out the benefits of memory utilization improvement.

At the same time, the conventional ECC (Error Cor-

rection Code) technology cannot be directly applied

to the remotely attached memory due to the lack of

hardware support. Hence, how to build a fault-toler-

ant memory system stays a challenging and impor-

tant research topic for the disaggregated datacenter.

Quality of Service (QoS). Although the QoS has

been well exploited from networking to CPU schedul-

ing and memory systems in the past decades[72–76], as

we mentioned in Section 3, it remains a severe prob-

lem in the disaggregated cloud, and is becoming even

more challenging due to the complicated resource-

sharing situations.

µ

Storage and Accelerator Disaggregation. Unlike

CPUs and memory, the storage and accelerator re-

sources are already I/O attached. Hence, the fast I/O

interconnects bring more opportunities than chal-

lenges to the existing storage and accelerator systems,

e.g., cache layer, block layer, file system, accelerator

runtime and programming models. For example, blk-

switch[77] proposes a redesigned kernel block layer to

achieve s-scale tail latency for applications running

on clusters with disaggregated storage. In addition,

the emerging interconnect, e.g., NVLink-C2C, allows

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 965

⑨A NoSQL distributed database. https://cassandra.apache.org, Sept. 2023.

⑩The rust programming language. https://doc.rust-lang.org, Sept. 2023.

https://cassandra.apache.org
https://doc.rust-lang.org
https://doc.rust-lang.org
https://doc.rust-lang.org

NVIDIA to build the rack-scale GPU cluster, DGX

GH200⑪. The NVLink-C2C provides hardware-sup-

port cache coherence to the connected CPU (Grace)

and GPU (Hopper), which significantly reduces the

programming overhead for managing the data move-

ment and maintaining the data consistency between

GPU and CPU.

Resource disaggregation presents so many active

challenges and opportunities for the existing cloud

systems. It is time to reinvent the software stacks for

this emerging architecture.

6 Conclusions

The resource disaggregation pushes the scalability,

availability, and serviceability of cloud computing to

the Next Era. At this moment, we should rethink the

design of cloud software stacks, from programming in-

terfaces and runtime to the operating systems, to ful-

ly take advantage of the benefits and cope with the

new challenges introduced by the disaggregated archi-

tectures.

Acknowledgements We thank the anony-

mous reviewers for their valuable and thorough com-

ments. We are grateful to our shepherd Zhi-Wei Xu

for his feedback.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

 Gao P X, Narayan A, Karandikar S, Carreira J, Han S,

Agarwal R, Ratnasamy S, Shenker S. Network require-

ments for resource disaggregation. In Proc. the 12th

USENIX Symposium on Operating Systems Design and

Implementation, Nov. 2016, pp.249–264.

[1]

 Shan Y Z, Huang Y T, Chen Y L, Zhang Y Y. LegoOS: A

disseminated, distributed OS for hardware resource disag-

gregation. In Proc. the 13th USENIX Conference on Op-

erating Systems Design and Implementation, Oct. 2018,

pp.69–87.

[2]

 Wang C X, Ma H R, Liu S, Qiao Y F, Eyolfson J, Navas-

ca C, Lu S, Xu G H. MemLiner: Lining up tracing and

application for a far-memory-friendly runtime. In Proc.

the 16th USENIX Symposium on Operating Systems De-

sign and Implementation, July 2022, pp.35–53.

[3]

 Wang C X, Ma H R, Liu S, Li Y Q, Ruan Z Y, Nguyen

K, Bond M D, Netravali R, Kim M, Xu G H. Semeru: A

memory-disaggregated managed runtime. In Proc. the

14th USENIX Symposium on Operating Systems Design

[4]

and Implementation, Nov. 2020, pp.261–280.
 Qiao Y F, Wang C X, Ruan Z Y, Belay A, Lu Q D,

Zhang Y Y, Kim M, Xu G H. Hermit: Low-latency, high-

throughput, and transparent remote memory via feed-

back-directed asynchrony. In Proc. the 20th USENIX

Symposium on Networked Systems Design and Implemen-

tation, Apr. 2023, pp.181–198.

[5]

 Gouk D, Lee S, Kwon M, Jung M. Direct access, high-

performance memory disaggregation with DirectCXL. In

Proc. the 2022 USENIX Annual Technical Conference,

July 2022, pp.287–294.

[6]

 Barroso L, Marty M, Patterson D, Ranganathan P. At-

tack of the killer microseconds. Communications of the

ACM, 2017, 60(4): 48–54. DOI: 10.1145/3015146.

[7]

 Li H C, Berger D S, Hsu L, Ernst D, Zardoshti P, No-

vakovic S, Shah M, Rajadnya S, Lee S, Agarwal I, Hill M

D, Fontoura M, Bianchini R. Pond: CXL-based memory

pooling systems for cloud platforms. In Proc. the 28th

ACM International Conference on Architectural Support

for Programming Languages and Operating Systems, Jan.

2023, pp.574–587. DOI: 10.1145/3575693.3578835.

[8]

 Ruan Z Y, Schwarzkopf M, Aguilera M K, Belay A.

AIFM: High-performance, application-integrated far mem-

ory. In Proc. the 14th USENIX Conference on Operating

Systems Design and Implementation, Nov. 2020, Article

No. 18.

[9]

 Schweizer H, Besta M, Hoefler T. Evaluating the cost of

atomic operations on modern architectures. In Proc. the

2015 International Conference on Parallel Architecture

and Compilation, Oct. 2015, pp.445–456. DOI: 10.1109/

PACT.2015.24.

[10]

 Wang C X, Cui H M, Cao T, Zigman J, Volos H, Mutlu

O, Lv F, Feng X B, Xu G H. Panthera: Holistic memory

management for big data processing over hybrid memo-

ries. In Proc. the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation, Jun.

2019, pp.347–362. DOI: 10.1145/3314221.3314650.

[11]

 Calciu I, Imran M T, Puddu I, Kashyap S, Al Maruf H,

Mutlu O, Kolli A. Rethinking software runtimes for disag-

gregated memory. In Proc. the 26th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems, Apr. 2021, pp.79–92.
DOI: 10.1145/3445814.3446713.

[12]

 Dean J, Ghemawat S. MapReduce: Simplified data pro-

cessing on large clusters. In Proc. the 6th Symposium on

Operating System Design and Implementation, Dec. 2004.

[13]

 Foster I, Kesselman C. The Grid 2: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann Publishers

Inc., 2003.

[14]

 Fan J P, Chen M Y. Dynamic self-organized computer ar-

chitecture based on grid-components (DSAG). Journal of

Computer Research and Development, 2003, 40(12):

1737–1742. (in Chinese)

[15]

 Li L, Cao Z, Chen M Y, Fan J P. A reconfigurable opti-

cal interconnect system for DSAG. In Proc. the 6th Inter-

national Conference on Parallel and Distributed Comput-

[16]

966 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

⑪NVIDIA DGX GH200 AI Supercomputer, AI Supercomputer for the Generative AI Era. 2023. https://resources.nvidia.com/
en-us-dgx-gh200/technical-white-paper, Sept. 2023.

https://doi.org/10.1145/3015146
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1109/PACT.2015.24
https://doi.org/10.1109/PACT.2015.24
https://doi.org/10.1145/3314221.3314650
https://doi.org/10.1145/3445814.3446713
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper
https://resources.nvidia.com/en-us-dgx-gh200/technical-white-paper

ing Applications and Technologies, Dec. 2005, pp.31–34.
DOI: 10.1109/PDCAT.2005.40.

 Asanović K, Bodik R, Catanzaro B C, Gebis J J, Husba-

nds P, Keutzer K, Patterson D A, Plishker W L, Shalf J,

Williams S W, Yelick K A. The landscape of parallel compu-

ting research: A view from Berkeley. Technical Report,

No. UCB/EECS-2006-183, EECS Department, University

of California, 2006. https://www2.eecs.berkeley.edu/

Pubs/TechRpts/2006/EECS-2006-183.html, Sept. 2023.

[17]

 Asanović K. FireBox: A hardware building block for 2020

warehouse-scale computers. In Proc. the 12th USENIX

Conference on File and Storage Technologies, Feb. 2014.

[18]

 Li S. High throughput remote memory data path for

cloud application [Bachelor's Thesis]. University of Chi-

nese Academy of Sciences, 2023. (in Chinese)

[19]

 Mellanox Technologies Inc. Introduction to InfiniBand.

White Paper. https://network.nvidia.com/pdf/whitepa-

pers/IB_Intro_WP_190.pdf, Sept. 2023.

[20]

 Subramoni H, Potluri S, Kandalla K, Barth B, Vienne J,

Keasler J, Tomko K, Schulz K, Moody A, Panda D K.

Design of a scalable InfiniBand topology service to enable

network-topology-aware placement of processes. In Proc.

the International Conference on High Performance Com-

puting, Networking, Storage and Analysis, Nov. 2012.

DOI: 10.1109/SC.2012.47.

[21]

 Lim K, Chang J C, Mudge T, Ranganathan P, Reinhardt

S K, Wenisch T F. Disaggregated memory for expansion

and sharing in blade servers. In Proc. the 36th Annual In-

ternational Symposium on Computer Architecture, Jun.

2009, pp.267–278. DOI: 10.1145/1555754.1555789.

[22]

 Wang C X, Qiao Y F, Ma H R, Liu S, Zhang Y Y, Chen

W G, Netravali R, Kim M, Xu G H. Canvas: Isolated and

adaptive swapping for multi-applications on remote mem-

ory. In Proc. the 20th USENIX Symposium on Net-

worked Systems Design and Implementation, Apr. 2023.

[23]

 Vilanova L, Maudlej L, Bergman S, Miemietz T, Hille M,

Asmussen N, Roitzsch M, Härtig H, Silberstein M. Slash-

ing the disaggregation tax in heterogeneous data centers

with FractOS. In Proc. the 17th European Conference on

Computer Systems, Mar. 2022, pp.352–367. DOI: 10.1145/

3492321.3519569.

[24]

 Guo Z Y, Blanco Z, Shahrad M, Wei Z R, Dong B L, Li J

M, Pota I, Xu H, Zhang Y Y. Decomposing and execut-

ing serverless applications as resource graphs. arXiv:

2206.13444, 2022. https://arxiv.org/abs/2206.13444, Oct.

2023.

[25]

 Liu M. Fabric-centric computing. In Proc. the 19th Work-

shop on Hot Topics in Operating Systems, Jun. 2023,

pp.118–126. DOI: 10.1145/3593856.3595907.

[26]

 Al Maruf H, Chowdhury M. Effectively prefetching re-

mote memory with leap. In Proc. the 2020 USENIX Con-

ference on USENIX Annual Technical Conference, July

2020, Article No. 58.

[27]

 Li H F, Liu K, Liang T, Li Z J, Lu T Y, Yuan H, Xia Y

B, Bao Y G, Chen M Y, Shan Y Z. HoPP: Hardware-soft-

ware co-designed page prefetching for disaggregated mem-

ory. In Proc. the 2023 IEEE International Symposium on

High-Performance Computer Architecture, Feb. 25–Mar.

1, 2023, pp.1168–1181. DOI: 10.1109/HPCA56546.2023.

[28]

10070986.

 Zhou Y, Wassel H M G, Liu S H, Gao J Q, Mickens J,

Yu M L, Kennelly C, Turner P, Culler D E, Levy H M,

Vahdat A. Carbink: Fault-tolerant far memory. In Proc.

the 16th USENIX Symposium on Operating Systems De-

sign and Implementation, July 2022, pp.55–71.

[29]

 Ousterhout A, Fried J, Behrens J, Belay A, Balakrishnan

H. Shenango: Achieving high CPU efficiency for latency-

sensitive datacenter workloads. In Proc. the 16th

USENIX Conference on Networked Systems Design and

Implementation, Feb. 2019, pp.361–378.

[30]

 Ruan Z Y, Park S J, Aguilera M K, Belay A,

Schwarzkopf M. Nu: Achieving microsecond-scale re-

source fungibility with logical processes. In Proc. the 20th

USENIX Symposium on Networked Systems Design and

Implementation, Apr. 2023, pp.1409–1427.

[31]

 Shen J C, Zuo P F, Luo X C, Yang T Y, Su Y X, Zhou Y

F, Lyu M R. FUSEE: A fully memory-disaggregated key-

value store. In Proc. the 21st USENIX Conference on File

and Storage Technologies, Feb. 2023, pp.81–97

[32]

 Li P F, Hua Y, Zuo P F, Chen Z Y, Sheng J J. ROLEX:

A scalable RDMA-oriented learned key-value store for

disaggregated memory systems. In Proc. the 21st

USENIX Conference on File and Storage Technologies,

Feb. 2023, pp.99–113.

[33]

 Luo X C, Zuo P F, Shen J C, Gu J Z, Wang X, Lyu M R,

Zhou Y F. SMART: A high-performance adaptive radix

tree for disaggregated memory. In Proc. the 17th USENIX

Symposium on Operating Systems Design and Implemen-

tation, July 2023, pp.553–571.

[34]

 Zuo P F, Sun J Z, Yang L, Zhang S W, Hua Y. One-sid-

ed RDMA-conscious extendible hashing for disaggregated

memory. In Proc. the 2021 USENIX Annual Technical

Conference, July 2021, pp.15–29.

[35]

 Ma H R, Liu S, Wang C X, Qiao Y F, Bond M D, Black-

burn S M, Kim M, Xu G H. Mako: A low-pause, high-

throughput evacuating collector for memory-disaggregat-

ed datacenters. In Proc. the 43rd ACM SIGPLAN Inter-

national Conference on Programming Language Design

and Implementation, Jun. 2022, pp.92–107. DOI: 10.1145/

3519939.3523441.

[36]

 Li S, Chen K, Brockman J B, Jouppi N P. Performance

impacts of non-blocking caches in out-of-order processors.

Technical Report, HPL-2011-65, HP Laboratories, 2011.

https://www.hpl.hp.com/techreports/2011/HPL-2011-65.

html, Sept. 2023.

[37]

 Kroft D. Lockup-free instruction fetch/prefetch cache or-

ganization. In Proc. the 8th Annual Symposium on Com-

puter Architecture, May 1981, pp.81–87.

[38]

 Farkas K I, Jouppi N P. Complexity/performance trade-

offs with non-blocking loads. ACM SIGARCH Computer

Architecture News, 1994, 22(2): 211–222. DOI: 10.1145/

192007.192029.

[39]

 Tuck J, Ceze L, Torrellas J. Scalable cache miss handling

for high memory-level parallelism. In Proc. the 39th An-

nual IEEE/ACM International Symposium on Microarchi-

tecture, Dec. 2006, pp.409–422. DOI: 10.1109/MICRO.2006.

44.

[40]

 Amaro E, Branner-Augmon C, Luo Z H, Ousterhout A,[41]

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 967

https://doi.org/10.1109/PDCAT.2005.40
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://doi.org/10.1109/SC.2012.47
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/3492321.3519569
https://doi.org/10.1145/3492321.3519569
https://arxiv.org/abs/2206.13444
https://doi.org/10.1145/3593856.3595907
https://doi.org/10.1109/HPCA56546.2023.10070986
https://doi.org/10.1109/HPCA56546.2023.10070986
https://doi.org/10.1145/3519939.3523441
https://doi.org/10.1145/3519939.3523441
https://www.hpl.hp.com/techreports/2011/HPL-2011-65.html
https://www.hpl.hp.com/techreports/2011/HPL-2011-65.html
https://www.hpl.hp.com/techreports/2011/HPL-2011-65.html
https://www.hpl.hp.com/techreports/2011/HPL-2011-65.html
https://www.hpl.hp.com/techreports/2011/HPL-2011-65.html
https://www.hpl.hp.com/techreports/2011/HPL-2011-65.html
https://doi.org/10.1145/192007.192029
https://doi.org/10.1145/192007.192029
https://doi.org/10.1109/MICRO.2006.44
https://doi.org/10.1109/MICRO.2006.44

Aguilera M K, Panda A, Ratnasamy S, Shenker S. Can

far memory improve job throughput? In Proc. the 15th

European Conference on Computer Systems, Apr. 2020,

Article No. 14. DOI: 10.1145/3342195.3387522.

 Mars J, Tang L J, Hundt R, Skadron K, Soffa M L. Bub-

ble-up: Increasing utilization in modern warehouse scale

computers via sensible co-locations. In Proc. the 44th An-

nual IEEE/ACM International Symposium on Microarchi-

tecture, Dec. 2011, pp.248–259.

[42]

 Delimitrou C, Kozyrakis C. Paragon: QoS-aware schedul-

ing for heterogeneous datacenters. ACM SIGPLAN No-

tices, 2013, 48(4): 77–88. DOI: 10.1145/2499368.2451125.

[43]

 Liu Y H, Deng X, Zhou J P, Chen M Y, Bao Y G. Ah-Q:

Quantifying and handling the interference within a data-

center from a system perspective. In Proc. the 2023 IEEE

International Symposium on High-Performance Comput-

er Architecture, Feb. 25–Mar. 1, 2023, pp.471–484. DOI:

10.1109/HPCA56546.2023.10071128.

[44]

 Nelson J, Holt B, Myers B, Briggs P, Ceze L, Kahan S,

Oskin M. Latency-tolerant software distributed shared

memory. In Proc. the 2015 USENIX Conference on

USENIX Annual Technical Conference, July 2015, pp.291–
305.

[45]

 Goodman J R, Woest P J. The Wisconsin Multicube: A

new large-scale cache-coherent multiprocessor. In Proc.

the 15th Annual International Symposium on Computer

Architecture, May 30–June 2, 1988, pp.422–431. DOI: 10.

1109/ISCA.1988.5253.

[46]

 Kuskin J, Ofelt D, Heinrich M, Heinlein J, Simoni R,

Gharachorloo K, Chapin J, Nakahira D, Baxter J,

Horowitz M, Gupta A, Rosenblum M, Hennessy J. The

Stanford FLASH multiprocessor. ACM SIGARCH Com-

puter Architecture News, 1994, 22(4): 302–313. DOI: 10.

1145/192007.192056.

[47]

 Goodman J, Hum H H J. MESIF: A two-hop cache co-

herency protocol for point-to-point interconnects. Techni-

cal Report, University of Auckland, 2009. https://www.

cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-

2009.pdf. Setp. 2023.

[48]

 Kalia A, Kaminsky M, Andersen D G. Datacenter RPCs

can be general and fast. In Proc. the 16th USENIX Con-

ference on Networked Systems Design and Implementa-

tion, Feb. 2019.

[49]

 International Data Group. 2020 IDG cloud computing

survey, 2020. https://cdn2.hubspot.net/hubfs/1624046/

2020%20Cloud%20Computing%20executive%20summary_
v2.pdf, Sept. 2023.

[50]

 Dally W J, Turakhia Y, Han S. Domain-specific hard-

ware accelerators. Communications of the ACM, 2020,

63(7): 48–57. DOI: 10.1145/3361682.

[51]

 Esmaeilzadeh H, Blem E, Amant R S, Sankaralingam K,

Burger D. Dark silicon and the end of multicore scaling.

In Proc. the 38th Annual International Symposium on

Computer Architecture, Jun. 2011, pp.365–376. DOI: 10.

1145/2000064.2000108.

[52]

 Zaharia M, Chowdhury M, Franklin M J, Shenker S, Sto-

ica I. Spark: Cluster computing with working sets. In

Proc. the 2nd USENIX Conference on Hot Topics in

Cloud Computing, Jun. 2010.

[53]

 Chen L, Zhao J C, Wang C X, Cao T, Zigman J, Volos

H, Mutlu O, Lv F, Feng X B, Xu G H, Cui H M. Unified

holistic memory management supporting multiple big da-

ta processing frameworks over hybrid memories. ACM

Trans. Computer Systems, 2021, 39(1/2/3/4): Article No.

2. DOI: 10.1145/3511211.

[54]

 Tsai S Y, Zhang Y Y. LITE kernel RDMA support for

datacenter applications. In Proc. the 26th Symposium on

Operating Systems Principles, Oct. 2017, pp.306–324.
DOI: 10.1145/3132747.3132762.

[55]

 McClure S, Ousterhout A, Shenker S, Ratnasamy S. Effi-

cient scheduling policies for microsecond-scale tasks. In

Proc. the 19th USENIX Symposium on Networked Sys-

tems Design and Implementation, Apr. 2022.

[56]

 Ma J Y, Sui X F, Sun N H, Li Y P, Yu Z H, Huang B W,

Xu T N, Yao Z C, Chen Y, Wang H B, Zhang L X, Bao

Y G. Supporting differentiated services in computers via

programmable architecture for resourcing-on-demand

(PARD). In Proc. the 20th International Conference on

Architectural Support for Programming Languages and

Operating Systems, Mar. 2015, pp.131–143. DOI: 10.1145/

2694344.2694382.

[57]

 Ziegler T, Tumkur Vani S, Binnig C, Fonseca R, Kraska

T. Designing distributed tree-based index structures for

fast RDMA-capable networks. In Proc. the 2019 Interna-

tional Conference on Management of Data, Jun. 2019,

pp.741–758.

[58]

 Wang Q, Lu Y Y, Shu J W. Sherman: A write-optimized

distributed B+tree index on disaggregated memory. In

Proc. the 2022 International Conference on Management

of Data, Jun. 2022, pp.1033–1048. DOI: 10.1145/3514221.

3517824.

[59]

 Wei X D, Chen R, Chen H B. Fast RDMA-based or-

dered Key-Value store using remote learned cache. In

Proc. the 14th USENIX Symposium on Operating Sys-

tems Design and Implementation, Nov. 2020, pp.117–135.

[60]

 Kraska T, Beutel A, Chi E H, Dean J, Polyzotis N. The

case for learned index structures. In Proc. the 2018 Inter-

national Conference on Management of Data, May 2018,

pp.489–504. DOI: 10.1145/3183713.3196909.

[61]

 Gibson D, Hariharan H, Lance E, McLaren M, Montazeri

B, Singh A, Wang S, H. Wassel H M G, Wu Z H, Yoo S,

Balasubramanian R, Chandra P, Cutforth M, Cuy P, De-

cotigny D, Gautam R, Iriza A, Martin M M K, Roy R,

Shen Z W, Tan M, Tang Y, Wong-Chan M, Zbiciak J,

Vahdat A. Aquila: A unified, low-latency fabric for data-

center networks. In Proc. the 19th USENIX Symposium

on Networked Systems Design and Implementation, Apr.

2022. pp.1249–1266.

[62]

 Xu Z W, Li C D. Low-entropy cloud computing systems.

SCIENTIA SINICA Informationis, 2017, 47(9): 1149–
1163. DOI: 10.1360/N112017-00069.

[63]

 Guo Z Y, Shan Y Z, Luo X H, Huang Y T, Zhang Y Y.

Clio: A hardware-software co-designed disaggregated

memory system. In Proc. the 27th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems, Feb. 2022, pp.417–
433. DOI: 10.1145/3503222.3507762.

[64]

 Korolija D, Koutsoukos D, Keeton K, Taranov K,[65]

968 J. Comput. Sci. & Technol., Sept. 2023, Vol.38, No.5

https://doi.org/10.1145/3342195.3387522
https://doi.org/10.1145/2499368.2451125
https://doi.org/10.1109/HPCA56546.2023.10071128
https://doi.org/10.1109/HPCA56546.2023.10071128
https://doi.org/10.1109/HPCA56546.2023.10071128
https://doi.org/10.1109/ISCA.1988.5253
https://doi.org/10.1109/ISCA.1988.5253
https://doi.org/10.1145/192007.192056
https://doi.org/10.1145/192007.192056
https://www.cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-2009.pdf
https://www.cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-2009.pdf
https://www.cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-2009.pdf
https://www.cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-2009.pdf
https://www.cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-2009.pdf
https://www.cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-2009.pdf
https://cdn2.hubspot.net/hubfs/1624046/2020%20Cloud%20Computing%20executive%20summary_v2.pdf
https://cdn2.hubspot.net/hubfs/1624046/2020%20Cloud%20Computing%20executive%20summary_v2.pdf
https://cdn2.hubspot.net/hubfs/1624046/2020%20Cloud%20Computing%20executive%20summary_v2.pdf
https://cdn2.hubspot.net/hubfs/1624046/2020%20Cloud%20Computing%20executive%20summary_v2.pdf
https://doi.org/10.1145/3361682
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/3511211
https://doi.org/10.1145/3132747.3132762
https://doi.org/10.1145/2694344.2694382
https://doi.org/10.1145/2694344.2694382
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1360/N112017-00069
https://doi.org/10.1360/N112017-00069
https://doi.org/10.1360/N112017-00069
https://doi.org/10.1145/3503222.3507762

Milojičić D, Alonso G. Farview: Disaggregated memory

with operator off-loading for database engines. arXiv:

2106.07102, 2021. https://arxiv.org/abs/2106.07102, Oct.

2023.

 Sidler D, Wang Z K, Chiosa M, Kulkarni A, Alonso G.

StRoM: Smart remote memory. In Proc. the 15th Euro-

pean Conference on Computer Systems, Apr. 2020, Arti-

cle No. 29. DOI: 10.1145/3342195.3387519.

[66]

 Yoon W, Oh J, Ok J, Moon S, Kwon Y. DiLOS: Adding

performance to paging-based memory disaggregation. In

Proc. the 12th ACM SIGOPS Asia-Pacific Workshop on

Systems, Aug. 2021, pp.70–78. DOI: 10.1145/3476886.3477

507.

[67]

 Lattner C, Adve V. Automatic pool allocation: Improv-

ing performance by controlling data structure layout in

the heap. In Proc. the ACM SIGPLAN 2005 Conference

on Programming Language Design and Implementation,

Jun. 2005, pp.129–142.

[68]

 Akram S, Sartor J B, McKinley K S, Eeckhout L. Write-

rationing garbage collection for hybrid memories. ACM

SIGPLAN Notices, 2018, 53(4): 62–77. DOI: 10.1145/

3296979.3192392.

[69]

 Larus J, Hunt G. The singularity system. Communica-

tions of the ACM, 2010, 53(8): 72–79. DOI: 10.1145/

1787234.1787253.

[70]

 Lee Y, Al Maruf H, Chowdhury M, Cidon A, Shin K G.

Hydra: Resilient and highly available remote memory. In

Proc. the 20th USENIX Conference on File and Storage

Technologies, Feb. 2022, pp.181–198.

[71]

 Chen S, Delimitrou C, Martínez J F. PARTIES: QoS-

aware resource partitioning for multiple interactive ser-

vices. In Proc. the 24th International Conference on Ar-

chitectural Support for Programming Languages and Op-

erating Systems, Apr. 2019, pp.107–120. DOI: 10.1145/

3297858.3304005.

[72]

 Delimitrou C, Kozyrakis C. Amdahl’s law for tail latency.

Communications of the ACM, 2018, 61(8): 65–72. DOI:

10.1145/3232559.

[73]

 Fried J, Ruan Z Y, Ousterhout A, Belay A. Caladan:

Mitigating interference at microsecond timescales. In

Proc. the 14th USENIX Conference on Operating Sys-

tems Design and Implementation, Nov. 2020, Article No.

16.

[74]

 Zhao J C, Feng X B, Cui H M, Yan Y L, Xue J L, Yang

W S. An empirical model for predicting cross-core perfor-

mance interference on multicore processors. In Proc. the

22nd International Conference on Parallel Architectures

and Compilation Techniques, Sept. 2013, pp.201–212.
DOI: 10.1109/PACT.2013.6618817.

[75]

 Liu L, Li Y, Cui Z H, Bao Y G, Chen M Y, Wu C Y. Go-

ing vertical in memory management: Handling multiplici-

ty by multi-policy. In Proc. the 41st International Sympo-

sium on Computer Architecture, Jun. 2014, pp.169–180.
DOI: 10.1109/ISCA.2014.6853214.

[76]

 Hwang J, Vuppalapati M, Peter S, Agarwal R. Rearchi-

tecting linux storage stack for μs latency and high

throughput. In Proc. the 15th USENIX Symposium on

[77]

Operating Systems Design and Implementation, July

2021, pp.113–128.

Chen-Xi Wang is currently an asso-

ciate professor at the Institute of

Computing Technology (ICT), Chi-

nese Academy of Sciences (CAS), Bei-

jing. His research focuses on building

systems for emerging architectures. He

got his Ph.D. degree in computer sci-

ence and technology from the ICT, CAS, Beijing in

2018.

Yi-Zhou Shan is now a research sci-

entist at Huawei Cloud, Shenzhen. He

works on large-scale distributed stor-

age systems, LLM serving, hardware

resource disaggregation, etc. He got

his Ph.D. degree from University of

California San Diego, California, 2022.

Peng-Fei Zuo is currently a techni-

cal expert at Huawei Cloud, Shenzhen.

His research interests include memory

systems, storage systems, and dis-

tributed systems. He obtained his B.S.

and Ph.D. degrees in computer sci-

ence from Huazhong University of Sci-

ence and Technology, Wuhan, in 2014 and 2019, respec-

tively.

Hui-Min Cui is currently a profes-

sor at the Institute of Computing

Technology (ICT), Chinese Academy

of Sciences (CAS), Beijing. Her re-

search interests include compiler opti-

mizations, programming languages,

and programming environments. She

received her B.S. and M.S. degrees in computer science

from Tsinghua University, Beijing, in 2001 and 2004, re-

spectively, and her Ph.D. degree from ICT, CAS, Bei-

jing, in 2012.

Chen-Xi Wang et al.: Reinvent Cloud Software Stacks for Resource Disaggregation 969

https://arxiv.org/abs/2106.07102
https://doi.org/10.1145/3342195.3387519
https://doi.org/10.1145/3476886.3477507
https://doi.org/10.1145/3476886.3477507
https://doi.org/10.1145/3296979.3192392
https://doi.org/10.1145/3296979.3192392
https://doi.org/10.1145/1787234.1787253
https://doi.org/10.1145/1787234.1787253
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3232559
https://doi.org/10.1109/PACT.2013.6618817
https://doi.org/10.1109/ISCA.2014.6853214

	1 Introduction
	2 Rise of Resource Disaggregation
	2.1 Computational Grid
	2.2 Resource Disaggregation
	2.2.1 Architecture Features
	2.2.2 Operating System (OS)
	2.2.3 Runtime System
	2.2.4 Summary

	3 New Challenges from Resource Disaggregation
	3.1 Lack of Microsecond-Scale Event Mitigation Techniques
	3.2 Severe QoS Violations
	3.3 Costly Inter-Server Synchronization

	4 Semantics-Aware Software Stack
	4.1 Semantics Gap
	4.2 Design Overview
	4.3 Disaggregated Operating System
	4.4 Disaggregated Runtime
	4.4.1 Disaggregated Abstractions Targeted at the Killer Microseconds
	4.4.2 Semantics-Aware Runtime Improving the Efficiency of System Management

	4.5 Disaggregated Programming Interface
	4.5.1 Hash Table
	4.5.2 Tree
	4.5.3 Learned Index

	5 Open Problems
	5.1 Hardware for Disaggregation
	5.1.1 Datacenter Networking
	5.1.2 Disaggregated Devices

	5.2 Programming Language for Disaggregation
	5.2.1 Data Management
	5.2.2 Thread Synchronization

	5.3 Other Important Problems

	6 Conclusions
	Acknowledgements
	Conflict of Interest
	References

