
Optimizing Dynamic-Shape Neural Networks on

Accelerators via On-the-Fly Micro-Kernel

Polymerization

Feng Yu
yufeng@ict.ac.cn
SKLP, ICT, CAS

UCAS
Beijing, China

Guangli Li∗
liguangli@ict.ac.cn

SKLP, ICT, CAS UCAS
Beijing, China

UNSW
Sydney, Australia

Jiacheng Zhao
zhaojiacheng@ict.ac.cn

SKLP, ICT, CAS
UCAS

Beijing, China

Huimin Cui
cuihm@ict.ac.cn
SKLP, ICT, CAS

UCAS
Beijing, China

Xiaobing Feng
fxb@ict.ac.cn
SKLP, ICT, CAS

UCAS
Beijing, China

Jingling Xue
j.xue@unsw.edu.au

UNSW
Sydney, Australia

Abstract

In recent times, dynamic-shape neural networks have gained
widespread usage in intelligent applications to address com-
plex tasks, introducing challenges in optimizing tensor pro-
grams due to their dynamic nature. As the operators’ shapes
are determined at runtime in dynamic scenarios, the compi-
lation process becomes expensive, limiting the practicality of
existing static-shape tensor compilers. To address the need
for effective and efficient optimization of dynamic-shape
neural networks, this paper introduces MikPoly, a novel
dynamic-shape tensor compiler based on micro-kernel poly-
merization. MikPoly employs a two-stage optimization ap-
proach, dynamically combining multiple statically generated
micro-kernels using a lightweight cost model based on the
shape of a tensor operator known at runtime. We evaluate
the effectiveness of MikPoly by employing popular dynamic-
shape operators and neural networks on two representative
accelerators, namely GPU Tensor Cores and Ascend NPUs.
Our experimental results demonstrate thatMikPoly effec-
tively optimizes dynamic-shape workloads, yielding an aver-
age performance improvement of 1.49× over state-of-the-art
vendor libraries.

1 Introduction

Deep Neural Networks (DNNs) have demonstrated remark-
able success across various domains, such as computer vi-
sion [21, 26, 48] and natural language processing [5, 10, 58].
In these DNNs, tensor operators (e.g., convolution and ma-
trix multiplication) play a crucial role, and their efficiency
is paramount for powering intelligent applications. In ad-
dition to traditional static-shape neural networks, which
involve tensor computations with fixed-shape input and out-
put, dynamic-shape neural networks are gaining popularity
∗Corresponding author.

1

10

100

1000

1 10 100 1000

262.2 TFLOPSTensor Core (FP16)

312 TFLOPS

T
F

L
O

P
S

 (
L

o
g

 S
ca

le
)

Arithmetic Intensity (Log Scale)

Compute BoundMemory Bound

(M,N,K)=(4096,4096,4096)

(M,N,K)=(105,1024,12544)

22.3 TFLOPS

Figure 1. Performance of GEMM with different shapes on
the NVIDIA A100 GPU (using cuBLAS).

in emerging intelligent applications to address more complex
tasks. For instance, BERT [10], a state-of-the-art language
model, uses variable input sizes based on the sequence length,
leading to tensor operators with varying shapes. Introduc-
ing dynamic characteristics in tensor computations brings
new challenges for performance optimization in libraries
and compilers. Efficiently handling these dynamic computa-
tions is vital to unlock the full potential of advanced neural
network architectures.

To support high-performance tensor computations, three
representative approaches have been proposed:
• Vendor-Provided Hand-Crafted Libraries.Most ven-

dors have provided highly-tuned implementations for neu-
ral network operators, e.g., oneDNN [23] on x86 CPUs and
cuBLAS [46] on Nvidia GPUs. While a library routine typ-
ically includes several hand-crafted operator implemen-
tations specially optimized for widely-used shapes, prior
studies [60] revealed that a carefully-designed specific op-
erator implementation is hardly suitable for all the shapes,
resulting in sub-optimal performance inevitably. For ex-
ample, we observed that the GEMM routine provided by

1

cuBLAS has significant performance variations for dif-
ferent tensor shapes (262.2 TFLOPS when (𝑀, 𝑁,𝐾) =
(4096, 4096, 4096) vs. 22.3 TFLOPSwhen (𝑀, 𝑁,𝐾) = (105,
1024, 12544)), even if both shapes are compute-bound), as
shown in Figure 1.
• Tensor Compilers for Static-Shape Operators.Most

tensor compilers like TensorFlow XLA [31], TVM [7], and
TC [57] optimize tensor operators by searching through
loop tiling structures within a substantial search space to
determine the optimal implementation for a given shape.
Nonetheless, these auto-schedulers necessitate prior knowl-
edge of the operator’s shape during compilation. This lim-
itation renders it infeasible to optimize tensor operators
across all potential shapes in dynamic scenarios due to
the high search cost within an extensive search space.
• Tensor Compilers for Dynamic-Shape Operators. Re-

cently, several studies have explored dynamic-shape com-
pilers [51, 67, 72]. One example, DietCode [67], enhances
traditional auto-schedulers by refining shape-generic sear-
ch spaces for optimal operator implementations. However,
these dynamic-shape auto-schedulers still rely on pre-
defined shape descriptions and offline code optimization.

Existing methods have utilized auto-schedulers that han-
dle a range of shapes to generate a limited subset of optimized
programs offline. However, these auto-schedulers cannot
guarantee efficient or even correct execution for shapes out-
side the pre-defined range, limiting their usability in dynamic
scenarios with frequent shape variations. Our approach en-
tails the creation of a set of finely-tuned fixed-size micro-
kernels, each of which represents a tiled loop nest responsible
for executing a portion of a tensor operator. These micro-
kernels are generated offline and are dynamically combined
on the fly to produce optimized code for any tensor shape
encountered during model execution. The key challenge lies
in determining an efficient composing strategy and generating
optimized code at a very low cost during model execution.

To address this challenge, we presentMikPoly, a dynamic-
shape tensor compiler founded on Micro-Kernel Polymer-
ization for emerging accelerators handling dynamic-shape
neural networks. MikPoly employs a two-stage process,
guided by a precise cost model, to obtain an optimized ten-
sor program for a dynamic-shape operator. It employs a
program template with innermost offline loops (forming a
micro-kernel template) and surrounding online loops. In the
offline stage, it creates highly-optimized fixed-size micro-
kernels (from the micro-kernel template) and develops corre-
sponding performance models. In the online stage, MikPoly
examines polymerization patterns to restructure online loops
into tensor programs using parameterized micro-kernels. It
then evaluates polymerization strategies by instantiating
these parameterized micro-kernels with the optimized fixed-
size ones obtained offline. MikPoly employs a precise yet
lightweight cost model, considering computation, memory,

and parallelism, to predict performance across diverse im-
plementations with various polymerization strategies and
patterns. This informs the selection of the most efficient final
tensor program for the given operator.

This paper makes the following contributions:
• We propose a two-stage approach to generate an opti-

mized tensor program for a dynamic-shape tensor opera-
tor on a multi-level accelerator abstraction. This approach
decouples the underlying optimization problem into an of-
fline stage, where a set of highly-optimized micro-kernels
for some fixed shapes is created, and an online stage,
where multiple micro-kernels are polymerized to obtain
an optimized program for any known shape at runtime.
• We introduce a precise yet lightweight cost model that
facilitates efficient online polymerization. During the of-
fline stage, we model the performance of individual micro-
kernels by concurrently considering computation and
memory access behavior. In the online stage, we consider
the performance of various program implementations for
an operator with different polymerization strategies under
various patterns, taking parallelism into account.
• We have implemented MikPoly, a dynamic-shape tensor

compiler, and evaluated it on two representative accelera-
tors, GPU Tensor Cores and Ascend NPUs. In the case of
GEMM and convolution operators,MikPoly demonstrates
average speedups of 1.29× (with a peak of 11.05×) and
1.70× (with a peak of 15.32×) compared to state-of-the-art
vendor libraries on GPUs and NPUs, respectively.

2 Background and Motivation

We start by explaining the importance of optimizing dynamic-
shape operators. We then review current solutions and in-
troduce our approach using GEMM as an illustrative case.

2.1 Dynamic-Shape Neural Networks

Traditional DNNs typically use staticmodel structures, where
the shapes of input and output tensors for each operator are
fixed, known as static-shape neural networks [51]. However,
real-world applications often exhibit dynamic behavior, such
as sentences of varying lengths in language modeling, mak-
ing static-shape neural networks insufficient. To address this
limitation, dynamic-shape neural networks have been pro-
posed to support more sophisticated real-world intelligent
applications, and we discuss some of their representative
scenarios below.
(1) Dynamic Batch Sizes. The batch size is a crucial param-
eter in model training, impacting the accuracy of the error
gradient estimation, as it represents the number of samples
used in one iteration. Larger batch sizes generally lead to
faster convergence and improved stability but come with
increased computational resource usage [18]. To address this
trade-off, researchers have conducted studies [9, 34] explor-
ing dynamic-shape neural networks with dynamic batch

2

for i in range(4096)

for j in range(1024)

for k in range(4096)

C[i,j] += A[i,k] * B[k,j]

Naïve Tensor Program

Tensor Operator (GEMM)

𝐶𝑖,𝑗 =෍

𝑘

𝐾

𝐴𝑖,𝑘 × 𝐵𝑘,𝑗

for i.0 in range(TM.0)

for j.0 in range(TN.0)

for k.0 in range(TK.0)

for i.1 in range(TM.1)

for j.1 in range(TN.1)

for k.1 in range(TK.1)

for i.2 in range(TM.2)

for j.2 in range(TN.2)

for k.2 in range(TK.2)

C[...] += A[...] * B[...]

Tiled Program Template for the Given Tensor Operator

TM.0, TM.1, TM.2 = 512, 4, 2

TN.0, TN.1, TN.2 = 256, 2, 2

TK.0, TK.1, TK.2 = 1024, 2, 2

unroll i.2, j.2

vectorize k.2

Explored Tensor Program #1

TM.0, TM.1, TM.2 = 256, 4, 4

TN.0, TN.1, TN.2 = 256, 4, 1

TK.0, TK.1, TK.2 = 512, 4, 2

unroll i.2, j.2

vectorize k.2

Explored Tensor Program #2

Tuned Tensor Program

𝑀 = 4096,𝑁 = 1024,𝐾 = 4096

𝑀 = 𝜏,𝑁 = 1024,𝐾 = 4096

...

Explored Tensor Programs

Dynamic-Shape Auto-Schedulers (e.g., DietCode)

Performance

Tuning

for a Static Shape

1

2

3

4

5

mul
𝑀 = 64,𝑁 = 1024, 𝐾 = 4096

𝑀 = 512,𝑁 = 1024, 𝐾 = 4096

𝑀 = 1024,𝑁 = 1024,𝐾 = 4096

...

Tuned Tensor Program

M=64,N=1024,K=4096

Tuned Tensor Program

M=512,N=1024,K=4096

Tuned Tensor Program

M=1024,N=1024,K=4096

76

Dynamic-Shape Description

Static-Shape Description

Static-Shape Auto-Schedulers (e.g., TVM)

...

Performance Tuning for a Dynamic Shape

by varying M over [1, 2048]

where 𝜏 is given, say, as 𝜏 ∈ 1, 4096

M=4096,N=1024,K=4096

Figure 2. Optimizing tensor programs for GEMM by existing static- and dynamic-shape tensor compilers.

Tensor Operator (GEMM)

𝐶𝑖,𝑗 =෍

𝑘

𝐾

𝐴𝑖,𝑘 × 𝐵𝑘,𝑗 mul
for i.0x in range(4096/x.uM)

for j.0x in range(1024/x.uN)

for k.0x in range(4096/x.uK)

micro-kernel(x.uM,x.uN,x.uK)

Micro-Kernel-Based Tensor Program (Pattern I)

for i.0 in range(TM.0)

for j.0 in range(TN.0)

for k.0 in range(TK.0)

for i.1 in range(TM.1)

for j.1 in range(TN.1)

for k.1 in range(TK.1)

for i.2 in range(TM.2)

for j.2 in range(TN.2)

for k.2 in range(TK.2)

C[...] += A[...] * B[...] Exploration Space of Offline Optimization

for i.0a in range(3072/a.uM)

for j.0a in range(1024/a.uN)

for k.0a in range(4096/a.uK)

micro-kernel(a.uM,a.uN,a.uK)

for i.0b in range(1024/b.uM)

for j.0b in range(1024/b.uN)

for k.0b in range(4096/b.uK)

micro-kernel(b.uM,b.uN,b.uK)

Micro-Kernel-Based Tensor Program (Pattern II)

Exploration Space of Online Optimization

...

M
ic

ro
-K

er
n

el
 P

o
ly

m
er

iz
a

ti
o

n

for ui.0 in range(uTM.0)

for uj.0 in range(uTN.0)

for uk.0 in range(uTK.0)

for ui.1 in range(uTM.1)

for uj.1 in range(uTN.1)

for uk.1 in range(uTK.1)

C[...] += A[...] * B[...]

𝑀 = 𝑎𝑛𝑦,𝑁 = 𝑎𝑛𝑦,𝐾 = 𝑎𝑛𝑦

𝑀 = 4096
𝑁 = 1024
𝐾 = 4096

1

4

3

Online Stage

Offline Stage

Runtime Shape

Complete Tensor Program

M=4096,N=1024,K=4096

5
Cost Model

Traversing Different Combinations of Micro-Kernels

Two-Stage Tiled Tensor Program Template 2

Constructing Optimized Programs
for Any Shapes On-the-Fly

M
ic

ro
-K

er
n

el

G
en

er
a

ti
o

n

Optimized Micro-Kernels Created offline
?.uM

?.uN

?.uK Tiled Template for the Micro-Kernel

uM=uTM.0*uTM.1, uN=uTN.0*uTN.1, uK=uTK.0*uTK.1

micro-kernel
(uM=16,uN=32,uK=64)

micro-kernel
(uM=32,uN=32,uK=16)

micro-kernel
(uM=64,uN=64,uK=64)

micro-kernel
(uM=256,uN=128,uK=32)

...

Figure 3. Generating an optimized tensor program for GEMM byMikPoly, a two-stage dynamic-shape tensor compiler.

sizes. This approach aims to enhance the training process
by adapting the batch size during training, offering better
optimization and performance for real-world applications.

(2) Dynamic Image Resolution. In computer vision tasks,
images often have varying tensor shapes due to different
resolutions. Existing methods [20, 63] resize images to a
fixed shape for static-shape DNNs, but this sacrifices original
image information, making it challenging to detect small
objects in complex scenarios [6]. To address this, state-of-
the-art models like Faster R-CNN [17] use advanced pooling
methods with dynamic-shape input tensors. These models
effectively handle varying image shapes, enabling accurate
object detection, even for small objects in complex scenes.

(3) Dynamic Sequence Length. Popular natural language
processing applications, like BERT [10], handle dynamically
changing tensor shapes due to varying input sentence lengths
[2, 58]. One solution to support variable sequence lengths is

to pad all sequences to a predefined maximum length, cover-
ing most cases [62]. Optimized padding policies have been
proposed in further research [1, 13]. However, the padding
approach [67] can result in resource waste when sequences
are much smaller than the maximum length.

2.2 The State of the Art

Automatic schedulers, such as TVM [7], have been developed
to achieve high-performance tensor programs across differ-
ent hardware. They utilize a cost model updated with actual
hardware measurements to explore shape-specific search
spaces, yielding efficient implementations. We illustrate this
optimization process using static- and dynamic-shape tensor
compilers using GEMM, as depicted in (❶) of Figure 2.
Let us delve into the operation of existing static-shape

tensor compilers (❷ to ❺ in Figure 2). Consider GEMM,
depicted in (❶), which represents a key operator in deep

3

neural networks. Initially, a naive tensor program with a
fixed shape (𝑀, 𝑁,𝐾) = (4096, 1024, 4096) is represented by
a three-dimensional nested loop (❷). However, this basic
version is suboptimal. Leading static-shape tensor compil-
ers like TVM [7] offer a tiled program template for GEMM
(❸), using undetermined tile parameters (e.g., TM.0, TN.0,
and TK.0). Static-shape tensor compilers engage in an auto-
scheduling process based on this template, exploring optimal
tile sizes within an extensive search space. This process in-
volves tuning various tiled tensor programs (❹). Ultimately,
a fine-tuned tensor program (❺) tailored to the specific shape
(𝑀, 𝑁,𝐾) = (4096, 1024, 4096) is derived, delivering superior
performance among the explored tensor program options.

Nonetheless, these static-shape tensor compilers often de-
mand significant time (e.g., 0.33 CPU hours [54]) to generate
efficient implementations for operators with predetermined
shapes (from ❶ to ❺). This duration is reasonable within
static scenarios, as the compilation is conducted offline, and
the fine-tuned programs can be recurrently executed dur-
ing runtime. In dynamic-shape situations, the compilation
process is executed online during model execution. Conse-
quently, the time-intensive method employed by static-shape
tensor compilers is unsuitable for this context.

Let us explore how existing dynamic-shape tensor compil-
ers [42, 67] work (❻ – ❼ in Figure 2). Consider GEMM in ❶
with a dynamic shape (𝑀, 𝑁,𝐾) = (𝜏, 1024, 4096). Here,𝑀 is
a dynamic dimension, and its range is specified as [1, 4096]
by a parameter 𝜏 provided by the developer. To generate opti-
mized implementations, developers can use auto-schedulers
with a set of representative shapes. While a comprehensive
set can enhance performance across various tensor shapes, it
also incurs higher compilation costs. To tackle this challenge,
DietCode [67] enhances the auto-scheduling process by gen-
erating a series of tuned tensor programs (❼), each tailored
for a set of shapes instead of just one. During runtime, a
suitable pre-compiled tensor program is selected based on
the known tensor shape, mitigating costly compilation ex-
penses. Nevertheless, DietCode mandates foreknowledge of
the tensor shape range (e.g., 𝜏 ∈ [1, 4096] for𝑀), limiting its
scope. A similar limitation applies to Nimble [51].
Existing static- and dynamic-shape compilers optimize

tensor operators for specific input ranges, leading to po-
tential performance degradation or runtime errors for out-
of-range shapes as well as suboptimal performance for in-
range shapes (as revealed in Section 5.2.3). To efficiently
execute dynamic-shape deep neural networks, an effective
mechanism is required to deliver high-performance tensor
programs with arbitrary shapes.

2.3 Our Solution

MikPoly innovates the compilation of dynamic-shape ten-
sor operators through a two-stage program template, de-
picted in Figure 3. For instance, in GEMM (❶), with an

initially unknown shape (𝑀, 𝑁,𝐾) at compile-time, we de-
sign a program template (❷) that integrates offline loops (in
blue) to create a micro-kernel template (❸), accompanied
by encompassing online loops (in orange). This configura-
tion empowers the creation of optimized micro-kernels with
varying sizes offline. The notion ofmicro-kernels draws inspi-
ration from existing offline optimization strategies [32, 67].
By flexibly reorganizing online loops using diverse poly-
merization patterns and strategies, we generate a spectrum
of on-the-fly GEMM implementations with distinct micro-
kernels. This flexibility enables the selection of the best-
performing GEMM implementation, tailored to the runtime-
known dynamic-shape, leveraging a precise yet lightweight
cost model (❹ and ❺).
In the offline stage,MikPoly creates a set of highly opti-

mized fixed-size micro-kernels, together with their perfor-
mance models, from the micro-kernel template (❸) leverag-
ing auto-schedulers, similar to static-shape compilers.

In the online stage, once GEMM’s runtime shape is known
(e.g., (𝑀, 𝑁,𝐾) = (4096, 1024, 4096)),MikPoly dynamically
adapts its program template (❷) into various GEMM imple-
mentations. This involves exploring diverse polymerization
patterns, depicted as Patterns I and II (❹), and utilizing varied
polymerization strategies to instantiate their parameterized
micro-kernels from the set of fixed-size micro-kernels gener-
ated offline. Pattern I retains the GEMM program template
while replacing micro-kernel(x.uM, x.uN, x.uK) with those
from the offline stage. Pattern II explores program implemen-
tations with two micro-kernels, micro-kernel(a.uM, a.uN,
a.uK) and micro-kernel(b.uM, b.uN, b.uK). Ultimately, the
optimal tensor program for the known shape (𝑀, 𝑁,𝐾) =
(4096, 1024, 4096) is selected and executed, determined by an
accurate and lightweight cost model (❺). This approach effi-
ciently generates tensor programs for dynamic-shape tensor
operators by blending polymerization patterns and strate-
gies with compile-time optimized fixed-size micro-kernels,
significantly boosting the performance of dynamic-shape
neural networks on emerging accelerators.

3 TheMikPoly Design

Figure 4 provides an overview of MikPoly, comprising two
core stages: micro-kernel generation (S1) and micro-kernel
polymerization (S2). In MikPoly, a target device is modeled
through a multi-level accelerator abstraction, where each
processing unit is abstractly depicted as a PE (Processing
Engine), and its memory hierarchy is represented by 𝑀𝑙𝑜𝑐𝑎𝑙
and𝑀𝑔𝑙𝑜𝑏𝑎𝑙 .
The initial stage of MikPoly occurs offline, employing a

template-driven tuning process to create and enhance micro-
kernels (via its Auto-Scheduling component). Consequently,
a set of micro-kernels is generated, with each tailored to a
specific size. Simultaneously, we develop a micro-kernel per-
formance model for each micro-kernel, enabling the second

4

PE

M
u

lt
i-

L
ev

el

A
cc

el
er

a
to

r
A

b
st

ra
ct

io
n 𝑀𝑙𝑜𝑐𝑎𝑙

𝑀𝑔𝑙𝑜𝑏𝑎𝑙

S1. Micro-Kernel Generation (Offline)

Micro-Kernel Performance Model Auto-Scheduling

Runtime

Polymerization

…

Tensor

Program Micro-

Kernels

⇌

Polymerization Cost Model

Target DevicesS2. Micro-Kernel Polymerization (Online)

PE𝑀𝑙𝑜𝑐𝑎𝑙

PE𝑀𝑙𝑜𝑐𝑎𝑙

PE𝑀𝑙𝑜𝑐𝑎𝑙

Figure 4. Overview of MikPoly.

stage to dynamically choose a fitting polymerization strategy
online with minimal computational overhead.
The micro-kernel polymerization stage for a tensor op-

erator occurs online when its shape is known.MikPoly re-
organizes the operator’s program template into different
implementations using its Runtime Polymerization compo-
nent, and selects the most efficient one for execution based
on a lightweight polymerization cost model. The Runtime
Polymerization component derives program candidates by
matching the operator’s template with predefined patterns
and then instantiates their parameterized micro-kernels us-
ing the fixed-size micro-kernels created offline. This involves
exploring available polymerization strategies for the runtime
shape heuristically.

3.1 Multi-Level Accelerator Abstraction

MikPoly uses a basic multi-level accelerator abstraction for
modern hardware platforms [8, 35, 36], denoted as 𝐻 =

(𝑃multi, 𝑀local, 𝑀global). This model incorporates multiple pro-
cessing engines (𝑃multi), hierarchical memory including local
memory (𝑀local) within a single processing engine (PE), and
global memory (𝑀global) shared among multiple PEs. This ab-
straction is widely adopted in contemporary neural network
compilers such as Roller [71], ANT [19], and WELDER [52],
enhancing efficient accelerator utilization.
This straightforward accelerator abstraction effectively

supports the creation of an accurate cost model for perfor-
mance prediction. For a given tensor program, its parallelism
on 𝐻 relies on 𝑃multi, and its memory access characteris-
tics (exclusive or shared) are governed by𝑀local and𝑀global.
Whenever feasible, 𝑀local is utilized to store data, thus en-
hancing memory access efficiency, while𝑀global allocates its
bandwidth equally across PEs. In MikPoly, micro-kernels
and their performance models are tailored to the local mem-
ory 𝑀local. This hardware abstraction allows MikPoly to
seamlessly adapt to different accelerators, like Nvidia GPUs
andHuawei NPUs. The representations of Nvidia A100 (𝐻gpu)
and Ascend 910A (𝐻npu) are depicted in Table 1.

Table 1. Abstraction of𝐻gpu (A100) and𝐻npu (Ascend 910A).

𝑃multi 𝑀local 𝑀global

𝐻gpu SMs (shared memory, local memory, register) (global memory)
𝐻npu DaVinci Cores (L1 buffer/unified buffer, L0 buffer, register) (global memory)

3.2 Two-Stage Optimization

We detail our approach to creating an optimized tensor pro-
gram for a dynamic-shape tensor operator, exemplifying it
through our motivating GEMM example in Figure 3.

3.2.1 Decoupled Optimization Space. For a tensor op-
erator, e.g., GEMM, loop tiling is frequently employed to
enhance data reuse within a given memory hierarchy. We
denote its tiled program template as 𝑄 , which encompasses
a collection of 𝑛-dimensional tiled loops with adjustable tile
size parameters. For example, GEMM’s program template
was examined earlier in ❷ within Figure 3.

Diverging from conventional tiled program templates uti-
lized in auto-schedulers [7, 68], 𝑄 embodies a two-stage
structure, comprising 𝑄offline and 𝑄online. Here, 𝑄offline is a
set of innermost (offline) loops tailored to exploit𝑀local, while
𝑄online are the remaining (online) loops optimized for𝑀global.
These two sets of loop nests are illustrated by the blue and
orange regions in ❷ of Figure 3, respectively.

The core idea of MikPoly is to generate micro-kernels of
various sizes from 𝑄offline and optimize their performance
offline. This empowers MikPoly to dynamically identify the
best polymerization strategy for 𝑄online based on the opera-
tor’s known shape at runtime. This approach involves reor-
ganizing𝑄online to create diverse micro-kernel combinations,
guided by an accurate and lightweight cost model.
Offline Optimization Space.We utilize amicro-kernel tem-
plate, denoted as �̂� , which is derived from the offline loops
in 𝑄offline and optimized for𝑀local. In the case of the GEMM
operator shown in Figure 3, its two-stage template (❷) re-
sults in a micro-kernel template �̂� (depicted at the bottom
of ❸). Through the use of �̂� , we can generate a set of opti-
mized fixed-size micro-kernels (displayed at the top of ❸),
alongwith their performancemodels, by using existing static-
shape auto-schedulers. These micro-kernels and their per-
formance models are then used in the online polymerization
process for 𝑄online.
Online Optimization Space.We reorganize 𝑄online using
predefined polymerization patterns to restructure 𝑄 into dif-
ferent program implementations for the underlying operator.
In the case of GEMM, two polymerization patterns are shown
in ❹ of Figure 3. From each obtained program implemen-
tation, we instantiate its parameterized micro-kernels by
systematically exploring all potential polymerization strate-
gies (essentially trying all fixed-size micro-kernels derived
offline), and finally, we select the best-performing version,
completing the process of micro-kernel polymerization for
this implementation.

5

3.2.2 Optimization Objective. Given a two-stage pro-
gram template 𝑄 for a tensor operator and a shape known
at runtime, S𝑆 represents the set of all tensor programs ex-
plored by MikPoly. The task of identifying the optimal per-
forming program 𝑆∗ for 𝑄 on a hardware platform 𝐻 can be
defined as an optimization problem:

𝑆∗ = argmin
𝑆 ∈S𝑆

Cost(𝑆, 𝐻) (1)

Due to significant runtime overhead, evaluating all tensor
programs in S𝑆 on real hardware at runtime is impractical.
Instead, we rely on a polymerization cost model that con-
siders factors like parallelism, memory access, and resource
utilization to estimate their performance.

3.3 Micro-Kernel Generation

This happens during the offline stage of MikPoly.
Auto-Tuning Fixed-Size Micro-Kernels. MikPoly gen-
erates a collection of fixed-size micro-kernels, denoted S�̃� ,
for each given micro-kernel template �̂� . Each micro-kernel
�̃� ∈ S�̃� is an instantiation of �̂� with a specific size, opti-
mized to efficiently use 𝑀local on given 𝐻 . Some fixed-size
micro-kernels for GEMM are illustrated in ❸ of Figure 3.

MikPoly uses established static-shape auto-schedulers [7,
68] to generate optimized micro-kernels in S�̃� for a specific
platform. Using three hyper-parameters, namely 𝑛gen, 𝑛syn,
and 𝑛mik, we create S�̃� in two steps. Initially, we include all
micro-kernels, each with the nested loops from �̂� and tile
sizes from {16 × 𝑖 | 𝑖 ∈ [1, 𝑛gen]} per dimension. Second, we
retain only some high-performing micro-kernels, reducing
the optimization space for the micro-kernel polymerization
stage. We utilize a tensor program derived directly from the
underlying operator, following Pattern I in Figure 3. We gen-
erate a set of synthetic test cases using dimension sizes from
{2𝑖 | 𝑖 ∈ [0, 𝑛syn]}. Themicro-kernels inS�̃� are ranked based
on their average performance for these synthetic workloads,
and only the Top-𝑛mik best-performing ones are retained.
In our evaluation (Section 5), we set 𝑛gen = 32, 𝑛syn = 12,

and 𝑛mik = 40 for the considered GPU and NPU platforms.
These empirical values cover diverse real-world dynamic-
shape workloads while minimizing both the offline auto-
tuning and the online polymerization overheads.
Micro-Kernel Performance Model. Each micro-kernel
�̃� ∈ S�̃� has a performance model created by MikPoly to
predict its execution cost in a reduction loop on a specific
platform 𝐻 . This is demonstrated using a GEMM program
utilizing a micro-kernel �̃� with size (𝑢𝑀,𝑢𝑁,𝑢𝐾), where 𝐾
is the reduction loop. The GEMM’s shape is represented
as (𝑀, 𝑁,𝐾) = (𝑡1 × 𝑢𝑀, 𝑡2 × 𝑢𝑁, 𝑡3 × 𝑢𝐾). Typically, the
reduction loop (𝐾) is executed on a single PE, while the re-
maining loops (𝑀 and 𝑁) are parallelized across multiple
PEs. To execute 𝑡3 instances of �̃� in the reduction loop on a
single PE while overlapping computation and memory op-
erations, MikPoly employs pipelining techniques [44, 71].

This pipelined task can be divided into three stages: (1) load-
ing data from𝑀global to𝑀local; (2) processing data on𝑀local

using �̃� on the PE; and (3) writing the results back from
𝑀local to 𝑀global. During execution, intermediate results of
a pipelined task are stored in 𝑀local, reducing memory ac-
cess traffic. When a GEMM operator with shape (𝑀, 𝑁,𝐾) =
(𝑡1 ×𝑢𝑀, 𝑡2 ×𝑢𝑁, 𝑡3 ×𝑢𝐾) is fully executed, 𝑡1 × 𝑡2 pipelined
tasks (each with 𝑡3 instances of �̃�) are executed in parallel on
𝑃multi. The cost of executing the entire operator is estimated
as the cost of executing (𝑡1×𝑡2)/|𝑃multi | pipelined tasks, each
composed of 𝑡3 instances of �̃� , where |𝑃multi | indicates the
number of PEs in 𝑃multi on 𝐻 .

With 𝑡1, 𝑡2, and 𝑡3 determined at runtime based on the spe-
cific GEMM shape, the offline stage requires creating a perfor-
mance model solely for a pipelined task. Let 𝑔predict (𝑡, �̃�, 𝐻)
be a piecewise linear function estimating the cost of exe-
cuting a pipelined task with 𝑡 instances of �̃� on platform 𝐻 .
This function is derived by performing experiments, running
�̃� with 𝑡 from 1 to 𝑛pred (set at 5120 empirically) on a single
PE on 𝐻 to learn its coefficients. These micro-kernel perfor-
mance models empower MikPoly to efficiently estimate the
performance of executing pipelined tasks on a single PE on
𝐻 during its online micro-kernel polymerization stage.

3.4 Micro-Kernel Polymerization

Polymerization Patterns. For a given program template
𝑄 (e.g., GEMM as illustrated in ❷ of Figure 3),MikPoly di-
vides the set of online loops in 𝑄online into multiple loop
nests, guided by predefined polymerization patterns. This
division leads to distinct program implementations. Each
newly formed loop nest encompasses the same micro-kernel
template from 𝑄 , but handles only a specific region of the
original computation within 𝑄online. For each program thus
obtained, we write 𝑅𝑖 to denote its 𝑖-th loop nest (region).
In the context of GEMM, two such patterns are visualized
in Figure 3. To efficiently address common scenarios, we
employ a pattern skeleton for the systematic generation of
polymerization patterns, shown in Figure 5 (a). This skeleton
divides an operator’s output into seven blocks, marked as
①–⑦. Derived from this skeleton, each pattern includes mul-
tiple regions, with each region encompassing one or more
blocks. To minimize online search effort, we categorize simi-
lar patterns and retain only the most representative. From
evaluations with synthetic workloads, we have finally se-
lected nine unique representative patterns forMikPoly, as
depicted in Figure 5 (b). For instance, Pattern-II, featured in
Figure 3, splits 𝑄online into two sections: 𝑅1 (①–③) and 𝑅2
(④–⑦), leading to two loop nests for micro-kernel(a.uM,
a.uN, a.uK) and micro-kernel(b.uM, b.uN, b.uK).

Polymerization Strategy. For each program resulting from
a polymerization pattern, MikPoly applies a polymerization
strategy to instantiate its parameterized micro-kernels from
the set of fixed-size micro-kernels generated offline. If a loop

6

①

④

②

⑤

③

⑦

⑥

Pattern Description Pattern Description

Ⅰ ①②③④⑤⑥⑦ Ⅵ ①②③ |④⑤ |⑥⑦

Ⅱ ①②③ |④⑤⑥⑦ Ⅶ ① |④ |⑤ |②③⑥⑦

Ⅲ ①④⑤ |②③⑥⑦ Ⅷ ① |④ |⑤ |②③⑥ |⑦

Ⅳ ①④⑤ |②③⑥ |⑦ Ⅸ ① |② |③ |④⑤ |⑥⑦

Ⅴ ① |② |③ |④⑤⑥⑦ - -

(a) Pattern skeleton (b) Polymerization patterns

Figure 5. Polymerization patterns used in MikPoly.

nest 𝑅𝑖 contains a (parameterized) micro-kernel, its instan-
tiation involves replacing it with a micro-kernel �̃�𝑖 from
S�̃�𝑖

. Moreover,MikPoly utilizes a local padding technique,
akin to CUTLASS, to minimize boundary checks and sustain
performance. This ensures the availability of micro-kernel
combinations with padding for any given shape.
Polymerization Cost Model.When assessing the perfor-
mance of a tensor program 𝑆 on a multi-level accelerator 𝐻 ,
we employ the following cost model. This model leverages
the performance models established for its micro-kernels,
while also factoring in parallelism from their concurrent
execution:

Cost(𝑆, 𝐻) =
∑︁

(𝑅𝑖 ,�̃�𝑖) ∈𝑆
𝑓wave (𝑅𝑖 , �̃�𝑖 , 𝐻) × 𝑓pipe (𝑅𝑖 , �̃�𝑖 , 𝐻) (2)

where 𝑓pipe gives the cost for the pipelined execution of a
micro-kernel (a pipelined task), and 𝑓wave gives the cost for
the parallel execution of multiple pipelined tasks. The over-
all execution cost of a tensor program 𝑆 is determined by
summing up the individual costs associated with executing
its regions 𝑅𝑖 , each of which encompasses the micro-kernel
�̃�𝑖 .

The function 𝑓wave represents the number of waves needed
to execute all pipelined tasks in parallel:

𝑓wave (𝑅𝑖 , �̃�𝑖 , 𝐻) =

⌈
𝑓parallel (𝑅𝑖 , �̃�𝑖)
|𝑃multi |

⌉
(3)

where 𝑓parallel (𝑅𝑖 , �̃�𝑖) denotes the number of pipelined tasks
(as instances of �̃�𝑖) involving non-reduction loops of 𝑅𝑖 .

The function 𝑓pipe is used to estimate the cost of executing
a pipelined task:

𝑓pipe (𝑅𝑖 , �̃�𝑖 , 𝐻) = 𝑔predict (𝑓num (𝑅𝑖 , �̃�𝑖), �̃�𝑖 , 𝐻) (4)

where 𝑔predict is the performance model (obtained in the of-
fline stage), and 𝑓num (𝑅𝑖 , �̃�𝑖) denotes the number of instances
of �̃�𝑖 appearing in a pipelined task within the reduction loop
of 𝑅𝑖 .

3.5 Putting it All Together

Algorithm 1 outlinesMikPoly’s workflow. In the Offline
Generation phase, optimized micro-kernels S�̃� are gen-
erated from a micro-kernel template �̂� using a TVM auto-
scheduler [7] (line 4). During On-the-Fly Polymerization,
for a dynamic shape known at runtime,MikPoly attempts
predefined patterns (Figure 5) based on a two-stage template

𝑄 . Utilizing heuristics, MikPoly explores polymerization
strategies and estimates costs using Equation 2 (lines 9 -12).
If the cost of (𝑅𝑖 , �̃�𝑖) exceeds the current best strategy’s cost,
related strategies are skipped, considerably narrowing the
search space with minimal runtime overhead (Section 5.3.1).
Finally,MikPoly constructs an optimized tensor program 𝑆∗

based on the best polymerization strategy (line 13).

Algorithm 1 MikPoly’s Two-Stage Optimization

Input: 𝑄 (Two-Stage Program Template) and 𝐻 (Target Device)
Output: 𝑆∗ (An Optimized Tensor Program)
1: function Offline Generation(𝑄 , 𝐻)
2: Generate �̂� from 𝑄offline
3: S

�̃�
← AutoTune(�̂�, 𝐻)

4: S
�̃�
← RankAndPrune(S

�̃�
)

5: return S
�̃�

6: end function

7: function On-the-Fly Polymerization(𝑄 , S
�̃�
, 𝐻)

8: Obtain 𝐷 as the operator’s dynamic-shape
9: for all polymerization patterns do
10: Generate polymerization strategies with 𝐷 , 𝑄 , and S

�̃�
11: Estimate their costs on 𝐻
12: end for

13: Construct 𝑆∗ using the best polymerization strategy
14: return 𝑆∗

15: end function

4 Implementation

Despite differing architectures between GPUs and NPUs,
MikPoly’s accelerator abstraction uniformly represents both,
as demonstrated in Table 1. For micro-kernel generation, we
set hyperparameters empirically to choose the micro-kernels
to be generated, as detailed in Section 5.4.MikPoly employs a
static-shape auto-scheduler, i.e., TVM with CUTLASS-based
templates for GPUs and manual templates for NPUs to pro-
duce fixed-size parameterized micro-kernels. These micro-
kernels, compiled into binary files, maintain a constant shape
size, treating tensor starting addresses and loop iteration
counts as parameters for online determination. Duringmicro-
kernel polymerization, MikPoly determines a suitable poly-
merization strategy for the specific runtime input shape and
instantiates the selected micro-kernels based on available
runtime data. This process entails adjusting tensor address
offsets, incurring minimal overhead mainly via scalar assign-
ments.
We have adopted nine patterns (I – IX) for the NPU plat-

form, where manual specification is needed for parallelizing
programs across multiple PEs, like DaVinci Cores. To assign
micro-kernels to these cores, a max-min static allocation
algorithm is employed, enhancing parallel execution and
overall performance. In contrast, on GPUs, due to the greater
emphasis on minimal runtime overhead, we have limited pat-
tern use to only Patterns I and II. These patterns are selected
based on their optimal balance of runtime overhead and

7

Table 2. Specifications for the experimental platforms.

Platform GPU Server NPU Server

Operating System Ubuntu 18.04 EulerOS 2.8
CPU Intel Xeon Gold 6348 Kunpeng 920

Host Memory 256 GB 128 GB
Accelerator Nvidia A100 Ascend 910

Processing Engine SM Da Vinci Core
Tensor Processing Module Ampere Tensor Core Cube Unit

Device Memory 80 GB 32 GB

Table 3. Benchmarked GEMM with dynamic shapes.

Category 𝑀⋇ 𝑁⋇ 𝐾⋇ #Test Cases

DeepBench [2, 10752] [1, 48000] [128, 500000] 166

Real-World
Applications

(Transformer-based
models (e.g., BERT),
fully connected
layers of CNNs
(e.g., AlexNet))

[1, 256] [1, 256] [1, 256] 299
[1, 256] [1, 256] [257, 65536] 218
[1, 256] [257, 1024] [1, 65536] 232
[1, 256] [1025, 65536] [1, 65536] 97

[257, 1024] [1, 256] [1, 65536] 64
[257, 1024] [257, 65536] [1, 65536] 87
[1025, 8192] [1, 256] [1, 65536] 65
[1025, 8192] [257, 8192] [1, 65536] 136
[8193, 65536] [1, 8192] [1, 8192] 69

operator performance. Additionally, GPUs utilize dynamic
allocation through hardware schedulers, which automati-
cally assign thread blocks to SMs.

MikPoly efficiently generates fixed-size micro-kernels for
tensor operators on GPU and NPU platforms within hours
(e.g., approximately 6 hours for GEMMonGPUs) in its offline
stage. These micro-kernels, tailored to specific platforms, do
not require re-generation for the same operator on the same
platform. In the online stage,MikPoly dynamically selects
an appropriate polymerization strategy and conveys run-
time information like offsets to the chosen micro-kernels for
dispatch. The main runtime overhead stems from exploring
polymerization strategies and estimating their costs, keeping
MikPoly’s runtime overhead minimal.

5 Evaluation

Our objective is to demonstrate that MikPoly effectively
optimizes dynamic-shape tensor operators and neural net-
works on accelerators, outperforming the state of the art. We
address the following research questions:
RQ1: CanMikPoly enhance dynamic-shape tensor opera-
tors and neural networks on accelerators practically?
RQ2: Does MikPoly’s cost model effectively support micro-
kernel polymerization in a lightweight manner?

5.1 Experimental Setting

Hardware and Software Platforms.MikPoly’s evaluation
covers two hardware platforms running Linux-based operat-
ing systems: an Nvidia A100 GPU and an Ascend 910 NPU
(Table 2). For the GPU platform, we utilize CUTLASS (v2.9),
CUDA toolkit (v11.5) with cuBLAS and cuDNN libraries. On
the NPU platform, we employ CANN SDK (v5.1.RC1). For
the GPU platform, we assess end-to-end performance using
PyTorch (v1.11) for CNN models and TurboTransformers

Table 4. Benchmarked convolution with dynamic shapes.

Category Filter Size Fmap Size⋇ Batch Size⋇ #Test Cases

AlexNet [27]
11x11 [64, 640]

[1, 128]

80
5x5 [7, 79] 80
3x3 [3, 39] 240

GoogLeNet [55]

7x7 [64, 640] 80
1x1/3x3 [16, 160] 160
1x1/3x3 [8, 80] 880
1x1/3x3 [4, 40] 1760
3x3 [2, 40] 240

1x1/3x3 [2, 20] 720

ResNet [21]

1x1/3x3 [16, 160] 240
3x3 [8, 80] 240

1x1/3x3 [4, 40] 240
3x3 [2, 20] 80

VGG [53]

3x3 [64, 640] 77
3x3 [32, 320] 80
3x3 [16, 160] 128
3x3 [8, 80] 80
3x3 [4, 80] 80

(master branch) for language models. On the NPU platform,
MindSpore (v1.7) is used for end-to-end model performance
on the NPU platform. For fairness, we switch to GEMM for
convolution when using libraries, as convolution has mul-
tiple implementations such as GEMM, Winograd, and FFT.
To ensure accuracy, we warm up experiments and average
execution times over 20 runs, reducing interference.
Benchmarks. Tables 3 and 4 display the benchmarks used
for GEMM and convolution, along with their respective test
cases. Each test case is characterized by a unique shape size.
In each operator, a shape dimension marked with/without
“⋇” indicates whether it is dynamic/static. For a dynamic
dimension, [𝑚𝑖𝑛,𝑚𝑎𝑥] represents its value range.

For GEMM with a dynamic shape (𝑀, 𝑁,𝐾), we consider
a total of 166 cases from DeepBench [43] and a total of 1267
cases from real-world applications. These include GEMM
operators in Transformer-based models such as BERT [11],
DistilBERT [50], RoBERTa [37], and ALBERT [28], and fully
connected layers in CNNs like AlexNet [27], GoogLeNet [55],
ResNet [21], and VGG [53], each with varying input sizes.
In transformer-based models, 𝑀 , 𝑁 , and 𝐾 depend on se-
quence length, hidden dimension size, and number of atten-
tion heads. For CNNs’ fully connected layers,𝑀 , 𝑁 , and 𝐾
are determined by batch size, number of output neurons, and
number of input neurons. For a dynamic-shape convolution
operator, we examine 5485 test cases across representative
CNN models. The test case count can rise significantly for
commonly-used filter sizes due to expanded input/output
channel combinations (e.g., GoogLeNet).
In our end-to-end experiments, we substituted the stan-

dard GEMM and convolution operators in the DNN frame-
work from cuBLAS/cuDNN/CANN with those tailored by
MikPoly, to assess model inference performance. This evalu-
ation involved four language models from HuggingFace [24]
(bert-base-uncased, distilbert-base-uncased, roberta-base, al-
bert-xxlarge-v2) and four CNNmodels fromTorchVision [41]
(alexnet, googlnet, resnet18, vgg11), focusing on end-to-end
dynamic-shape neural network analysis. This encompasses

8

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 8 9 10 11 12 13Sp
ee

du
ps

 o
ve

r c
uB

LA
S

FLOPs of Workloads (Log Scale)
(a) GEMM

+
−

MIKPOLY over cuBLAS
CUTLASS over cuBLAS
cuBLAS (Baseline)!

0
1
2
3
4
5
6
7

5 6 7 8 9 10 11 12 13Sp
ee

du
ps

 o
ve

r c
uD

N
N

FLOPs of Workloads (Log Scale)
(b) Convolution

+
−

MIKPOLY over cuDNN
CUTLASS over cuDNN
cuDNN (Baseline)!

Figure 6. Speedups on GPUs (normalized to
cuBLAS/cuDNN).
various sequence lengths, batch sizes, and image resolutions.
To replicate real-world scenarios, we generate 150 sentences
with lengths spanning from 5 to 500 for language models.
For CNN models, we utilize 8 batch sizes and 10 resolution
sizes. Batch sizes are configured as 2𝑛 , where 𝑛 varies from
0 to 7, and resolution sizes are set at 64 × 𝑖 , where 𝑖 varies
from 1 to 10.

5.2 Performance Results

In this section, we introduce and analyze our results.

5.2.1 Optimizing Dynamic-Shape Operators.

MikPoly vs. GPU Libraries. Figure 6 shows the speedups
of MikPoly, CUTLASS, and cuBLAS/cuDNN (normalized to
the baseline cuBLAS/cuDNN) for both GEMM and convolu-
tion operators. The x-axis specifies the number of floating-
point operations (FLOPs) in the workloads (encompassing
all test cases for GEMM from Table 3 and convolution from
Table 4), while the y-axis represents the speedups of each
approach over the baseline.MikPoly effectively optimizes
dynamic-shape operators, with an average GEMM speedup
of 1.47× (with amaximumof 4.82×) over cuBLAS and an aver-
age convolution speedup of 1.98× (with a maximum of 5.38×)
over cuDNN. Compared to CUTLASS, MikPoly achieves av-
erage GEMM and convolution speedups of 3.02× and 1.72×,
respectively. Notably, MikPoly performs exceptionally well
for small shapes, where the “imbalance" phenomenon be-
comes more pronounced (as discussed in Section 6).
MikPoly vs. anNPULibrary. Figure 7 depicts the speedups
of MikPoly over the vendor library CANN (used as the
baseline) for the same two operators on NPUs. MikPoly
demonstrates its effectiveness in optimizing dynamic shape
operators on NPUs, outperforming CANN with an average
speedup of 1.10× for GEMM and 1.41× for convolution. Due
to its ability to alleviate the memory bottleneck, MikPoly
achieves significant speedups for certain test cases.

5.2.2 Optimizing Dynamic-Shape Model Inference.

Figures 8 and 9 show the end-to-end inference performance
of typical language models and CNNmodels on GPUs, where
MikPoly, CUTLASS, and cuBLAS/cuDNN represent the spee-
dups of the three implementationmethods (normalized to the
cuBLAS/cuDNNbaseline). It is important to note that the end-
to-end model inference latency for MikPoly encompasses

0
2
4
6
8
10
12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Sp
ee

du
ps

 o
ve

r C
A

N
N

FLOPs of Workloads (Log Scale)
(a) GEMM

MIKPOLY over CANN
CANN (Baseline)

+!

0

4

8

12

16

20

5 6 7 8 9 10 11 12 13

Sp
ee

du
ps

 o
ve

r C
A

N
N

FLOPs of Workloads (Log Scale)
(b) Convolution

MIKPOLY over CANN
CANN (Baseline)

+!

Figure 7. Speedups on NPUs (normalized to CANN).

both the operator execution time on the accelerator and the
runtime overhead attributed to MikPoly’s cost model.

In each model, the x-axis denotes input tensor shapes, and
the y-axis shows speedups relative to the baseline. MikPoly
achieves average speedups of 1.39×, 1.38×, 1.36×, and 1.37×
for BERT, DistilBERT, RoBERTa, and ALBERT, respectively.
For AlexNet, GoogLeNet, ResNet, and VGG,MikPoly’s aver-
age speedups are 1.34×, 1.69×, 1.59×, and 1.22×, respectively.
Remarkably,MikPoly consistently outperforms CUTLASS
across a wide range of input shapes, even surpassing hand-
tuned kernels from this proprietary vendor library in scenar-
ios involving small shapes.

We also evaluatedMikPoly on NPUs. Compared to CANN,
MikPoly achieves average speedups of 1.30×, 1.19×, 1.32×,
and 1.38× for AlexNet, GoogLeNet, ResNet, and VGG, re-
spectively. Overall, MikPoly effectively accelerates the end-
to-end execution of dynamic-shape DNNs.

5.2.3 ComparingMikPoly with the State of the Art.

We compared MikPoly with existing dynamic-shape tensor
compilers, DietCode [67] and Nimble [51], on GPUs. To en-
sure a fair evaluation, we excluded Tensor Cores inMikPoly
for this experiment as DietCode and Nimble support only
GPU CUDA Cores. As explained in Section 2, both DietCode
and Nimble face limitations in handling arbitrarily-shaped
tensors, as they require a supplied range for each dynamic
dimension in a shape. This restriction hampers their appli-
cability in scenarios where shapes are not predefined or
dynamically vary.

In Figure 10, we present the results obtained from all 1599
test cases indicated in Table 3 forMikPoly, DietCode, Nimble,
and CUTLASS. Both Nimble and DietCode were given input
ranges for 𝑀 , 𝑁 , and 𝐾 as specified in Table 3. The x-axis
represents the FLOPs of these workloads, and the y-axis
shows the speedups (normalized to DietCode). On average,
MikPoly outperforms DietCode, Nimble, and CUTLASS by
2.94×, 7.54×, and 3.59×, respectively.

In Table 5, we further examine their end-to-end inference
performance for the four language models considered, using
input sequence lengths ranging from 5 to 500. We utilize a
set of 150 randomly generated lengths within this range for
comparison across all four methods. On average,MikPoly
outperforms DietCode (the best performer among the three
compared existing methods) by 1.55×.

9

0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

5 50 71 10
9

13
8

16
6

20
2

24
6

26
6

28
7

31
7

35
5

39
2

41
7

44
0

46
6

48
2

Sp
ee

du
ps

Sequence length
(d) ALBERT

0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

5 50 71 10
9

13
8

16
6

20
2

24
6

26
6

28
7

31
7

35
5

39
2

41
7

44
0

46
6

48
2

Sp
ee

du
ps

Sequence length
(c) RoBERTa

0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

5 50 71 10
9

13
8

16
6

20
2

24
6

26
6

28
7

31
7

35
5

39
2

41
7

44
0

46
6

48
2

Sp
ee

du
ps

Sequence length
(b) DistilBERT

0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

5 50 71 10
9

13
8

16
6

20
2

24
6

26
6

28
7

31
7

35
5

39
2

41
7

44
0

46
6

48
2

Sp
ee

du
ps

Sequence length
(a) BERT

MIKPOLY over cuBLAS cuBLAS (Baseline)CUTLASS over cuBLAS

Figure 8. Comparison of end-to-end performance with dynamic sequence lengths (normalized to cuBLAS).

0

0.4

0.8

1.2

1.6

2

2.4

1 2 4 8 16 32 64 128

Sp
ee
du
ps

Batch

0

0.4

0.8

1.2

1.6

2

2.4

1 2 4 8 16 32 64 128

Sp
ee
du
ps

Batch
(c) ResNet

0

0.4

0.8

1.2

1.6

2

2.4

1 2 4 8 16 32 64 128

Sp
ee
du
ps

Batch
(b) GoogLeNet

64 640Resolution −

MIKPOLY over cuDNN cuDNN (Baseline)CUTLASS over cuDNN

0

0.4

0.8

1.2

1.6

2

2.4

1 2 4 8 16 32 64 128

Sp
ee
du
ps

Batch
(a) AlexNet (d) VGG

Figure 9. Comparison of end-to-end performance with dynamic batch sizes and image resolutions (normalized to cuDNN).

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13Sp
ee

du
ps

 o
ve

r D
ie

tC
od

e

FLOPs of Workloads (Log Scale)

+ MIKPOLY over DietCode
◇ Nimble over DietCode
▬ CUTLASS over DietCode

DietCode (Baseline)

1
0

Figure 10. Speedups for GEMM on GPUs (normalized to
DietCode).

Table 5. End-to-end inference performance on GPUs (nor-
malized to DietCode).

Method BERT DistilBERT RoBERTa ALBERT Average
DietCode [67] 1.00× 1.00× 1.00× 1.00× 1.00×
Nimble [51] 0.25× 0.26× 0.25× 0.26× 0.25×
CUTLASS 0.70× 0.71× 0.71× 0.71× 0.71×

MikPoly (Ours) 1.60× 1.60× 1.50× 1.51× 1.55×

DietCode can yield errors or incorrect outcomes when the
runtime shape of a tensor operator falls outside its predefined
shape, leading to invalid runs due to issues such as out-of-
bounds errors or resource unavailability. Table 6 presents the
counts of valid runs for both MikPoly and DietCode during
the execution of GEMM, using a total of 8192 dynamic shapes,
(𝑀, 𝑁,𝐾) = (𝜏, 3072, 768), where 𝜏 ranges from 1 to 8192. For
DietCode, one of the five input ranges for𝑀 was provided,
while forMikPoly,𝑀 is considered fully dynamic at runtime.
Notably, DietCode produces numerous invalid runs, unlike
MikPoly, which exhibits zero occurrences of invalid runs.
Additionally, as outlined in Table 7, DietCode underperforms
compared to MikPoly, even with the utilization of input
range information for𝑀 across 128 evaluated test cases. The
superiority of MikPoly over DietCode in terms of speedup

Table 6. ComparingMikPoly with DietCode using GEMM
when the runtime size of𝑀 falls outside its predefined range.

8192 Test Cases:𝑀 ∈ [1, 8192], 𝑁 = 3072, 𝐾 = 768

DietCode 𝑀 ’s Input Range [1, 128] [1, 512] [1, 1024] [1, 2048] [1, 8192]
#Valid Runs 254 572 1136 2144 8192

MikPoly 𝑀 ’s Input Range N/A
#Valid Runs 8192

Table 7. Speedups of MikPoly over DietCode using GEMM
when the runtime size of𝑀 falls with its predefined range.

128 Test Cases:𝑀 ∈ [1, 128], 𝑁 = 3072, 𝐾 = 768
DietCode’s Input Range for𝑀 [1, 128] [1, 512] [1, 1024] [1, 2048] [1, 8192]

Speedups 1.68× 1.81× 1.92× 2.25× 2.37×

becomes more pronounced as the input range widens. These
outcomes further underscore the practical effectiveness of
MikPoly’s on-the-fly micro-kernel polymerization.

5.2.4 Applying MikPoly to LLMs. To assessMikPoly’s
efficacy in LLM scenarios, we employed Llama2-13b [56]
from HuggingFace for evaluating both operator and end-
to-end inference performance. The experiments were con-
ducted on a server with four Nvidia A100 GPUs connected
via NVLink, under the same software platform setup as de-
scribed in Section 5.1. Input sequence lengths were set to
2𝑖 (with 𝑖 ranging from 0 to 9), and batch sizes to 2𝑗 (with 𝑗
ranging from 0 to 3). We also configured tensor parallelism
size to 4 to fully utilize the four GPUs and set the output
sequence length to 512, aligning with common practices in
LLM systems [22, 33, 59].
We tested four representative GEMM operators in the

Llama2-13b model: qkv_proj, o_proj, ffn up, and ffn down,
10

Table 8. Speedups of GEMM operators in Llama2-13b (nor-
malized to cuBLAS).

Layer Name 𝑀 𝑁⋇ 𝐾 Speedups
qkv_proj 3840 [1, 4096] 5120 1.09×
o_proj 5120 [1, 4096] 1280 1.24×
ffn up 3456 [1, 4096] 5120 1.21×

ffn down 5120 [1, 4096] 3456 1.08×

0.96
0.98
1

1.02
1.04
1.06

1 2 4 8

Sp
ee
du
ps

Batch

FasterTransformer MikPoly

Input Sequence Length 1 512

Figure 11. End-to-end inference performance of Llama2-13b
on GPUs (normalized to FasterTransformer).

across 52 unique test cases with varying shapes. The per-
formance results of these GEMM operators, where 𝑁 is the
dynamic dimension, are detailed in Table 8. In comparison
to cuBLAS, MikPoly achieved average speedups of 1.09×,
1.24×, 1.21×, and 1.08× for these operators, respectively.

In evaluating end-to-endmodel inference, we usedNvidia’s
FasterTransformer as a baseline, integratingMikPoly’s GEMM
operators into it. The results, shown in Figure 11, indicate
MikPoly’s performance with varying input sequence lengths
(x-axis) and speedups relative to the baseline (y-axis).MikPoly
achieved average speedups of 1.05×, 1.04×, 1.02×, and 1.01×
for batch sizes 1, 2, 4, and 8, respectively, demonstrating its
effectiveness in optimizing LLMs.

5.3 Performance Analysis

We now provide a comprehensive performance analysis of
MikPoly using GEMM on GPUs, illustrated in Figure 12.

5.3.1 Online Polymerization Overhead. In Figure 12(a),
we show MikPoly’s execution breakdown for GEMM on
GPUs, including micro-kernel polymerization costs and exe-
cution times of final tensor programs across different shapes.
A comparison is made against cuBLAS (baseline) and CUT-
LASS. The x-axis denotes various shapes used, while the
y-axis presents execution times normalized to cuBLAS. No-
tably, MikPoly’s polymerization cost forms a small fraction
of total execution time for each shape, decreasing as shape
size increases due to its efficient cost model.

5.3.2 Cost Model Effectiveness. In Figure 12(b), we com-
pare threeMikPoly variants for GEMM on GPUs using all
test cases from Table 3. Additionally, for reference, CUT-
LASS is included for comparison purposes.MikPoly-Oracle
employs an exhaustive search, reporting runtime of opti-
mized tensor programs for shapes, disregarding search cost.
MikPoly-Wave considers the number of waves required for

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 R
un

ti
m

e
(L

ow
er

is
B

et
te

r)

GEMM (M=N=K)

cuBLAS CUTLASS

MIKPOLY (Program + Polymerization Cost)

(a) Performance breakdown

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

FLOPs of Workloads (Log Scale)

+ MIKPOLY

◇MIKPOLY-WAVE MIKPOLY-PIPE

●MIKPOLY-ORACLE△ CUTLASS

▬

(b) Speedups over MIKPOLY-ORACLE

Dashed Line

Average

S
p
ee

d
u
p
s

(n
o
rm

al
iz

ed
 t

o
 M

IK
P

O
L

Y
-O

R
A

C
L

E
)

Figure 12. GEMM performance analysis of MikPoly on
GPUs.

executing pipelined tasks (via 𝑓wave in Section 3), resulting in
large-sized micro-kernels. MikPoly-Pipe uses the execution
costs of pipelined tasks executed on a single SM (via 𝑓pipe
in Section 3), favoring small-sized micro-kernels. The x-axis
indicates the FLOPs in the workloads considered, while the
y-axis shows speedups of different methods normalized to
MikPoly-Oracle (baseline).

On average, the speedups achieved byMikPoly,MikPoly-
Wave, andMikPoly-Pipe overMikPoly-Oracle are 0.96×,
0.81×, and 0.72×, respectively. For reference, CUTLASS ex-
hibits an average speedup of 0.45×.
MikPoly-Wave produces large-sized micro-kernels that

focus on minimizing the number of waves, whileMikPoly-
Pipe generates small-sized micro-kernels that focus on max-
imising the performance of a pipelined task. MikPoly takes
both factors into consideration, outperforming CUTLASS
(which lacks the guidance of a cost model).

MikPoly-Oracle, utilizing an oracle cost model, achieves
the best performance. However, its search process is ex-
cessively time-consuming, making it impractical for real-
world applications. Specifically, for a given shape, MikPoly-
Oracle takes about 1.6 seconds to find the best polymeriza-
tion solution, whereas MikPoly accomplishes the same task
in just about 2 microseconds on average. Remarkably, de-
spite this significant reduction in search time,MikPoly deliv-
ers nearly identical high-performing programs as MikPoly-
Oracle, showcasing the effectiveness of our cost model.

5.4 Hyperparameter Analysis

We conducted sensitivity tests on MikPoly’s hyperparam-
eters, 𝑛𝑔𝑒𝑛 , 𝑛𝑠𝑦𝑛 , and 𝑛𝑚𝑖𝑘 , as outlined in Section 5.1, with
results in Figure 13. Each hyperparameter’s value range is
on the x-axis, and MikPoly’s average operator speedups
over cuBLAS are on the y-axis. These experimental results
highlight a balance between operator performance and poly-
merization cost, showing performance enhancement up to
a saturation point with increasing hyperparameter values.
As a result, we set 𝑛𝑔𝑒𝑛 = 32, 𝑛𝑠𝑦𝑛 = 12, and 𝑛𝑚𝑖𝑘 = 40, as
indicated by stars in Figure 13.

11

n𝑔𝑒𝑛

S
p

ee
d

u
p

s
o

v
er

 c
u

B
L

A
S

(a) Hyperparameter 𝑛𝑔𝑒𝑛

0

0.4

0.8

1.2

1.6

S
p

ee
d

u
p

s
o

v
er

 c
u

B
L

A
S

n𝑠𝑦𝑛
(b) Hyperparameter 𝑛𝑠𝑦𝑛

0

0.4

0.8

1.2

1.6

n𝑚𝑖𝑘

(c) Hyperparameter 𝑛𝑚𝑖𝑘

S
p

ee
d

u
p

s
o

v
er

 c
u

B
L

A
S

0

0.3

0.6

0.9

1.2

1.5

1 2 4 8 16 32

Figure 13. Hyperparameters analysis in MikPoly.

(b) NPUs

𝑁 = 1024

𝑀
=
4
0
9
6

𝓐

𝓑

…

𝓐

𝓑

…

𝓒

…

…

…
…

𝓓

𝑁 = 1024

(a) GPUs

𝑀
=
4
0
9
6

𝓐

𝓑

𝓒

𝓓

Selected
Micro-Kernels

𝓐

𝓑

Selected
Micro-Kernels

Figure 14. Two tensor programs generated by MikPoly for
GEMM on GPUs and NPUs using two different polymeriza-
tion schemes.

6 Case Studies

We analyzeMikPoly’s performance using GEMM on GPUs
with a test case (𝑀, 𝑁,𝐾) = (4096, 1024, 4096), where𝑀 sig-
nifies the dynamic input sequence length. Figure 14 displays
two polymerization strategies applied to GPUs and NPUs,
respectively. On GPUs, MikPoly selects a tensor program
with two micro-kernels (A and B), achieving a speedup of
1.21× compared to the single micro-kernel program (A). On
NPUs,MikPoly utilizes a program comprising four micro-
kernels (A toD) and achieves a speedup of 1.12× compared
to the single micro-kernel program (A).

Let GEMM-AB denote the programwith twomicro-kernels,
A and B; GEMM-A as the program with the single micro-
kernel A; and GEMM-B as the program with the single
micro-kernel B. In Figure 15, we observe that GEMM-AB
can effectively mitigate load imbalance on GPUs, outper-
forming individual micro-kernels.
In Figure 15(a), the execution times of GEMM-A and

GEMM-B are given with 𝑁 = 1024 and 𝐾 = 4096, while
𝑀 varies over [1024, 4096] with a stride of 256. As 𝑀 in-
creases from 3328 to 3584, the execution time of GEMM-
A increases from 0.11 ms to 0.21 ms. Table 9 presents the
performance metrics obtained by Nvidia’s profiling tools
for GEMM-A (with 𝑀 ∈ {3072, 4096}) and GEMM-AB
(with 𝑀 = 4096). Notably, sm_efficiency indicates the
percentage of time that at least one warp is active on an
SM, elapsed_cycles_sm indicates the number of clock cy-
cles elapsed per SM, and grid_size indicates the number of
thread blocks. When𝑀 increases from 3072 to 4096, GEMM-
A experiences a drop in sm_efficiency from 86.67% to
58.90%, and its elapsed_cycles_sm increases by 1.96×. Thus,
as the number of thread blocks increases from 96 to 128,

0.05

0.1

0.15

0.2

0.25

1024
1536

2048
2560

3072
3584

4096

Ex
ec

ut
io

n
Ti

m
es

(m
s) GEMM-𝒜

GEMM-ℬ

(a) GEMM-𝒜 and GEMM-ℬ

M

Ti
m

e

SMs

⋯

𝑡!

8 warps

𝑤!

𝑤"

(b) GEMM-𝒜 (M=4096)

A
B

𝑡!

4 warps

𝑤"

Ti
m

e

SMs

⋯𝑤#

𝑤!

A

(c) GEMM-𝒜ℬ (M=4096)

Figure 15. How MikPoly’s micro-kernel polymerization
mitigates the load-imbalance problem on GPUs (𝑁 = 1024
and 𝐾 = 4096).

Table 9. Performance measurements for GEMM on GPU.

GEMM-A GEMM-AB
(𝑀 = 3072) (𝑀 = 4096) (𝑀 = 4096)

sm_efficiency (%) 86.67 58.90 96.06
elapsed_cycles_sm 16,186,802 31,714,450 25,681,910

grid_size 96 128 352

GEMM-A faces a load imbalance problem, while GEMM-
AB, obtained byMikPoly through micro-kernel polymer-
ization, exhibits improved hardware utilization.
In Figure 15(b), we reveal the load imbalance in GEMM-
A. Each rectangle’s width corresponds to the number of
warps, while its height reflects warps’ execution time. On the
A100 GPU, grids of threads are divided into waves of thread
blocks based on available SMs and theoretical occupancy.
With 108 SMs and a maximum of 64 warps per SM, GEMM-
A has a theoretical occupancy of 12.5%, yielding only 8
active warps per SM. Thus, a full wave comprises 864 warps.
MikPoly employs a thread block of 256 threads (8 warps)
for A, with 𝑢𝑀 = 256, 𝑢𝑁 = 128, and 𝑢𝐾 = 32 (Figure 3).
This results in (4096 × 1024)/(256 × 128) = 128 pipelined
tasks (Section 3.3) for GEMM-A. Consequently, GEMM-A
requires 128×8 = 1024warps. This necessitates ⌈1024/864⌉ =
2 waves to complete, with the last wave underutilizing the
GPU and significantly impacting its execution time.
In Figure 15(c), we depict the effective mitigation of the

load imbalance issue faced by GEMM-A through GEMM-
AB. GEMM-AB follows Pattern II (Figure 3), with GEMM-
AB-TOP handling (𝑀, 𝑁,𝐾) = (3072, 1024, 4096) using A,
and GEMM-AB-BOT addressing (𝑀, 𝑁,𝐾) = (1024, 1024,
4096) using B. For GEMM-AB-TOP, similar to GEMM-A,
a simple analysis indicates it induces (3072 × 1024)/(256 ×
128) = 96 pipelined tasks, necessitating 768 warps. GEMM-
AB-BOT also maintains a theoretical occupancy of 12.5%,
resulting in 8 active warps per SM and a maximum of 864
warps per wave. Concerning B, with 𝑢𝑀 = 𝑢𝑁 = 𝑢𝐾 = 64,
a thread block of 128 threads (4 warps) is utilized. Hence,
GEMM-AB-BOT generates (1024 × 1024)/(64 × 64) = 256
pipelined tasks, requiring 1024 warps. Consequently, GEMM-
AB necessitates ⌈(768 + 1024)/864⌉ = 3 waves to complete,
with the final wave accounting for a fraction 𝑡B

𝑡A+2∗𝑡B of the
total execution time, where 𝑡A and 𝑡B denote the pipelined

12

execution times ofA and B, respectively. When 𝑡A > 2×𝑡B ,
GEMM-AB outperforms GEMM-A by a factor of 2∗𝑡A

(𝑡A+2∗𝑡B) .
The effectiveness of micro-kernel polymerization is evident
in sm_efficiency, as illustrated in Table 9.

7 Discussions

Generality.Wehave successfully demonstrated thatMikPoly
can accelerate representative tensor operators such as GEMM
and convolution, as well as real-world applications like BERT
and ResNet on both GPU and NPU platforms. The framework
utilizes a novel two-stage approach to address the perfor-
mance optimization challenges in dynamic-shape scenarios.
This generic framework can be extended to support numer-
ous other operators and accelerators.

Applicability. The speedups achieved byMikPolymay vary
across different applications due to the diversity of tensor
shapes. We noticed that MikPoly performs exceptionally
well for operators with frequently varying input shapes in a
relatively large range. Moreover, when certain input shape
ranges are known during compilation, we can enhance per-
formance by generating a more appropriate set of micro-
kernels and refining the cost model for better optimization.

Loop Transformation. Polymerization in this study can
be seen as a variant of traditional loop transformation for
dynamic shapes. As illustrated in Figures 3 and 4,MikPoly
operates in two stages, using a tensor program template with
inner offline loops and outer online loops. In polymeriza-
tion, MikPoly splits the online loop into groups of nested
loops, each with a parameterized micro-kernel, pending loop
boundaries and micro-kernel selection. With a chosen poly-
merization strategy, these micro-kernels are finalized, also
setting the nested loops’ boundaries.

Impact on LLM Systems. MikPoly, designed to boost
dynamic-shape operator performance, is fully compatible
with in-flight batching technology [61], enabling dynamic
runtime batch size adjustments. This enhances dynamic-
shape GEMM operator efficiency, accelerating LLMs. Future
plans involve integratingMikPoly with system-level opti-
mizations for further LLM efficiency improvements.

Limitations. Our future work will focus on two main di-
rections to improve our approach. First, we plan to explore
the combination of MikPoly with graph-level optimization
techniques, such as operator fusion [25], to further enhance
performance at the graph level in dynamic-shape scenarios.
Second, while our current implementation utilizes a GEMM-
based approach for convolution, we recognize the potential
benefits of investigating other convolution implementations,
such as Winograd [30], which may offer additional perfor-
mance improvements. We look forward to exploring this
area as a part of our future research efforts.

8 Related Work

For static-shape workloads, researchers have achieved suc-
cess in improving operator performance through techniques
such as automatic tuning [7, 14, 47, 68, 69], polyhedral mod-
els [4, 57, 66], and analytical modeling [32, 64]. In compari-
son,MikPoly stands out among prior dynamic-shape auto-
schedulers [42, 51, 67, 72] as it broadens the optimization
space through micro-kernel polymerization and employs a
two-stage compilation approach. This enablesMikPoly to
efficiently support arbitrary-shape high-performance opera-
tors at runtime, as comprehensively evaluated in this paper.

Numerous studies focus on graph-level optimizations, in-
cluding operator fusion [25, 45, 65, 70], co-scheduling [12,
40], and layout selection [3, 38]. In the context of dynamic
shape scenarios, DISC [72] uses shape relations instead of
shape size for operator fusion criteria. Batching systems
employ merge-batch strategies [13] and request concatena-
tion [16, 62] to reduce padding overhead due to varying
shapes. At the IR level, MLIR [29] and TensorIR [15] focus
on expressiveness and performance optimization, extensible
to support tile-level computational representations. Nim-
ble [51] extends Relay [49] to represent dynamic structures
like control and recursion, ensuring performance portability
with virtual machines. DietCode [67] employs an enhanced
auto-scheduler to generate tensor programs for dynamic-
shape tensor operators with known shape ranges at compile
time. VELTAIR [39] addresses resource contention in multi-
tenant DNN servers through multi-version compilation, cre-
ating optimized programs offline and selecting the best one
at runtime with a linear model. Conversely,MikPoly targets
a different dynamic aspect in DNN systems, concentrating
on optimizing programs for dynamic shapes. This allows
MikPoly to be smoothly integrated with other techniques,
boosting overall neural network performance.

9 Conclusion

This paper presents MikPoly, a novel dynamic-shape tensor
compiler that optimizes tensor programs for dynamic-shape
tensor operators. The approach involves creating a set of
highly optimized fixed-sized micro-kernels offline and then
dynamically combining these micro-kernels online via micro-
kernel polymerization based on a lightweight cost model.
Experimental results demonstrate the effectiveness of our
approach, achieving an average speedup of 1.49× over state-
of-the-art vendor libraries on representative accelerators.

Acknowledgments

We thank all the reviewers for their valuable comments. This
work was supported in part by the National Key R&D Pro-
gram of China (2021ZD0110101), the China Postdoctoral
Science Foundation (2023M733566), the National Natural Sci-
ence Foundation of China (62232015, 62090024, 62302479,
U23B2020), and the Innovation Funding of ICT, CAS (E361010).

13

References

[1] Ashish Agarwal. Static automatic batching in tensorflow. In Interna-
tional Conference on Machine Learning, pages 92–101. PMLR, 2019.

[2] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,
Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catan-
zaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end
speech recognition in english and mandarin. In International confer-
ence on machine learning, pages 173–182. PMLR, 2016.

[3] Andrew Anderson and David Gregg. Optimal dnn primitive selection
with partitioned boolean quadratic programming. In Proceedings of the
2018 International Symposium on Code Generation and Optimization,
pages 340–351, 2018.

[4] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del
Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib
Kamil, and Saman Amarasinghe. Tiramisu: A polyhedral compiler
for expressing fast and portable code. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 193–
205, 2019.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Chenyi Chen, Ming-Yu Liu, Oncel Tuzel, and Jianxiong Xiao. R-cnn
for small object detection. In Asian conference on computer vision,
pages 214–230. Springer, 2016.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. TVM: An automated end-to-end optimizing compiler
for deep learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578–594, 2018.

[8] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and
Ronny Krashinsky. Nvidia a100 tensor core gpu: Performance and
innovation. IEEE Micro, 41(2):29–35, 2021.

[9] Aditya Devarakonda,MaximNaumov, andMichael Garland. Adabatch:
Adaptive batch sizes for training deep neural networks. arXiv preprint
arXiv:1712.02029, 2017.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics.

[12] Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song
Han. Ios: Inter-operator scheduler for cnn acceleration. Proceedings
of Machine Learning and Systems, 3:167–180, 2021.

[13] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Turbotrans-
formers: an efficient gpu serving system for transformer models. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 389–402, 2021.

[14] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and Todd Mowry. The
cora tensor compiler: Compilation for ragged tensors with minimal
padding. Proceedings of Machine Learning and Systems, 4:721–747,
2022.

[15] Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang
Lai, Zihao Ye, Lianmin Zheng, Cody Hao Yu, Yong Yu, et al. Tensorir:
An abstraction for automatic tensorized program optimization. arXiv
preprint arXiv:2207.04296, 2022.

[16] Boqian Fu, Fahao Chen, Peng Li, and Deze Zeng. Tcb: Accelerating
transformer inference services with request concatenation. In Proceed-
ings of the 51st International Conference on Parallel Processing, pages

1–11, 2022.
[17] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 1440–1448, 2015.
[18] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[19] Cong Guo, Chen Zhang, Jingwen Leng, Zihan Liu, Fan Yang, Yunxin
Liu, Minyi Guo, and Yuhao Zhu. Ant: Exploiting adaptive numerical
data type for low-bit deep neural network quantization. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1414–1433. IEEE, 2022.

[20] Dasol Han, Jaewook Yoo, and Dokwan Oh. Seethroughnet: Resurrec-
tion of auxiliary loss by preserving class probability information. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4463–4472, 2022.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[22] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc,
Kurt Keutzer, Amir Gholami, and Sophia Shao. Speed: Specu-
lative pipelined execution for efficient decoding. arXiv preprint
arXiv:2310.12072, 2023.

[23] Intel. oneAPI Deep Neural Network Library, Retrieved Dec 3, 2023
from https://github.com/oneapi-src/oneDNN.

[24] Shashank Mohan Jain. Hugging face. In Introduction to Transformers
for NLP: With the Hugging Face Library and Models to Solve Problems,
pages 51–67. Springer, 2022.

[25] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. Taso: optimizing deep learning computation
with automatic generation of graph substitutions. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, pages 47–62,
2019.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C.J. Burges, L. Bottou, and K.Q.Weinberger, editors,Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc.,
2012.

[28] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint arXiv:1909.11942,
2019.

[29] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. Mlir: Scaling compiler infrastructure
for domain specific computation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 2–14.
IEEE, 2021.

[30] Andrew Lavin and Scott Gray. Fast algorithms for convolutional
neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4013–4021, 2016.

[31] Chris Leary and Todd Wang. Xla: Tensorflow, compiled. TensorFlow
Dev Summit, 2017.

[32] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and
P Sadayappan. Analytical characterization and design space explo-
ration for optimization of cnns. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, pages 928–942, 2021.

[33] Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, Xi-
uhong Li, Kai Zhong, Guohao Dai, Huazhong Yang, and Yu Wang.

14

Llm-mq: Mixed-precision quantization for efficient llm deployment.
[34] Yanghao Li, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu.

Adaptive batch normalization for practical domain adaptation. Pattern
Recognition, 80:109–117, 2018.

[35] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and
Yuxing Hu. Ascend: a scalable and unified architecture for ubiquitous
deep neural network computing : Industry track paper. In 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), pages 789–801, 2021.

[36] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji
Chen, and Tianshi Chen. Cambricon: An instruction set architecture
for neural networks. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pages 393–405, 2016.

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[38] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang.
Optimizing CNN model inference on CPUs. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 1025–1040, 2019.

[39] Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and
Minyi Guo. Veltair: towards high-performance multi-tenant deep
learning services via adaptive compilation and scheduling. In Proceed-
ings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 388–401,
2022.

[40] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei
Cui, Wenxiang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. Ram-
mer: Enabling holistic deep learning compiler optimizations with
rTasks. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 881–897, 2020.

[41] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-
vision package of torch. In Proceedings of the 18th ACM international
conference on Multimedia, pages 1485–1488, 2010.

[42] Pengyu Mu, Yi Liu, Rui Wang, Guoxiang Liu, Zhonghao Sun, Hailong
Yang, Zhongzhi Luan, and Depei Qian. Haotuner: A hardware adap-
tive operator auto-tuner for dynamic shape tensor compilers. IEEE
Transactions on Computers, 2023.

[43] S Narang and G Diamos. Deepbench: Benchmarking deep learning
operations on different hardware, 2016.

[44] Quan M Nguyen and Daniel Sanchez. Pipette: Improving core utiliza-
tion on irregular applications through intra-core pipeline parallelism.
In 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 596–608. IEEE, 2020.

[45] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren.
Dnnfusion: accelerating deep neural networks execution with ad-
vanced operator fusion. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation, pages 883–898, 2021.

[46] Nvidia. cuBLAS: Basic Linear Algebra on NVIDIA GPUs, Retrieved
Dec 3, 2023 from https://developer.nvidia.com/cublas.

[47] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly
Barnes, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo
Durand. Halide: Decoupling algorithms from schedules for high-
performance image processing. Communications of the ACM, 61(1):106–
115, 2017.

[48] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks.
arXiv preprint arXiv:1506.01497, 2015.

[49] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa
Kirisame, Tianqi Chen, and Zachary Tatlock. Relay: A new ir for
machine learning frameworks. In Proceedings of the 2nd ACM SIG-
PLAN international workshop on machine learning and programming
languages, pages 58–68, 2018.

[50] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
ArXiv, abs/1910.01108, 2019.

[51] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li,
Vin Sharma, Zachary Tatlock, and Yida Wang. Nimble: Efficiently
compiling dynamic neural networks for model inference. Proceedings
of Machine Learning and Systems, 3:208–222, 2021.

[52] Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Ziming
Miao, Yuxiao Guo, Fan Yang, and Lidong Zhou. Welder: Scheduling
deep learning memory access via tile-graph. In 17th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 23),
pages 701–718, 2023.

[53] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[54] PassMark Software. Intel Xeon Platinum 8259CL @2.50GHz, 2020.
[55] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

[56] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[57] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. arXiv
preprint arXiv:1802.04730, 2018.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[59] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou,
Xiafei Qiu, Yong Li, Wei Lin, and Shuaiwen Leon Song. Flash-llm:
Enabling cost-effective and highly-efficient large generative model
inference with unstructured sparsity. arXiv preprint arXiv:2309.10285,
2023.

[60] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen, and
Yibo Zhu. Bolt: Bridging the gap between auto-tuners and hardware-
native performance. Proceedings of Machine Learning and Systems,
4:204–216, 2022.

[61] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. Orca: A distributed serving system for Transformer-
Based generative models. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 521–538, Carlsbad,
CA, July 2022. USENIX Association.

[62] Yujia Zhai, Chengquan Jiang, Leyuan Wang, Xiaoying Jia, Shang
Zhang, Zizhong Chen, Xin Liu, and Yibo Zhu. Bytetransformer: A high-
performance transformer boosted for variable-length inputs. arXiv
preprint arXiv:2210.03052, 2022.

[63] Jiaqing Zhang, Jie Lei, Weiying Xie, Zhenman Fang, Yunsong Li, and
Qian Du. Superyolo: Super resolution assisted object detection in
multimodal remote sensing imagery. arXiv preprint arXiv:2209.13351,
2022.

[64] Xiaoyang Zhang, Junmin Xiao, and Guangming Tan. I/o lower bounds
for auto-tuning of convolutions in cnns. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 247–261, 2021.

[65] Jie Zhao, Xiong Gao, Ruijie Xia, Zhaochuang Zhang, Deshi Chen,
Lei Chen, Renwei Zhang, Zhen Geng, Bin Cheng, and Xuefeng Jin.
Apollo: Automatic partition-based operator fusion through layer by
layer optimization. Proceedings of Machine Learning and Systems,

15

4:1–19, 2022.
[66] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao,

Bin Cheng, Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang, and
Xuefeng Jin. Akg: Automatic kernel generation for neural processing
units using polyhedral transformations. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, page 1233–1248, New York,
NY, USA, 2021. Association for Computing Machinery.

[67] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua
Fromm, Yizhi Liu, Yida Wang, Luis Ceze, Tianqi Chen, and Gennady
Pekhimenko. Dietcode: Automatic optimization for dynamic tensor
programs. In D. Marculescu, Y. Chi, and C. Wu, editors, Proceedings of
Machine Learning and Systems, volume 4, pages 848–863, 2022.

[68] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
et al. Ansor: Generating High-Performance tensor programs for deep
learning. In 14th USENIX symposium on operating systems design and
implementation (OSDI 20), pages 863–879, 2020.

[69] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng.
Flextensor: An automatic schedule exploration and optimization

framework for tensor computation on heterogeneous system. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
859–873, 2020.

[70] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping Long, Kai Zhu,
Feiwen Zhu, Wenyi Zhao, Xiaoyong Liu, Jun Yang, Jidong Zhai, et al.
Astitch: enabling a new multi-dimensional optimization space for
memory-intensive ml training and inference on modern simt archi-
tectures. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 359–373, 2022.

[71] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen
Zhang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Wei Cui, et al. ROLLER:
Fast and efficient tensor compilation for deep learning. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22), pages 233–248, 2022.

[72] Kai Zhu, WY Zhao, Zhen Zheng, TY Guo, PZ Zhao, JJ Bai, Jun Yang,
XY Liu, LS Diao, and Wei Lin. Disc: A dynamic shape compiler for
machine learning workloads. In Proceedings of the 1st Workshop on
Machine Learning and Systems, pages 89–95, 2021.

16

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Dynamic-Shape Neural Networks
	2.2 The State of the Art
	2.3 Our Solution

	3 The MikPoly Design
	3.1 Multi-Level Accelerator Abstraction
	3.2 Two-Stage Optimization
	3.3 Micro-Kernel Generation
	3.4 Micro-Kernel Polymerization
	3.5 Putting it All Together

	4 Implementation
	5 Evaluation
	5.1 Experimental Setting
	5.2 Performance Results
	5.3 Performance Analysis
	5.4 Hyperparameter Analysis

	6 Case Studies
	7 Discussions
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

